from ultralytics import YOLO from ultralytics import settings from roboflow import Roboflow rf = Roboflow(api_key="V6C1HgdOhbGH9M0SqFog") project = rf.workspace("ata220180t").project("220180t_carlogos") version = project.version(5) dataset = version.download("yolov8") settings.update({"wandb": True, "comet": False, "tensorboard": False} ) model = YOLO("yolov8s.pt") # result = model.train(data="220180T_carlogos-5/data.yaml", # epochs=30, # save_period=1, # batch=50, # device= "cpu", # project='Car-Logos', # plots=True, # freeze=5, # lr0= 1e-7, # optimizer = "Adam" , # cls = 0.1, # ) model = YOLO("Car-Logos/train17/weights/best.pt") validation_results = model.val(data="220180T_carlogos.v5i.yolov8-obb/data.yaml", device="cpu") model.save("car_logos.pt")