Spaces:
Sleeping
Sleeping
app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import cv2
|
| 4 |
+
from ultralytics import YOLO
|
| 5 |
+
|
| 6 |
+
# Load model (ensure the path to the weights file is correct)
|
| 7 |
+
model_path = "Car-Logos/train15/weights/best.pt"
|
| 8 |
+
detection_model = YOLO(model_path)
|
| 9 |
+
|
| 10 |
+
def predict_image(pil_image):
|
| 11 |
+
"""Process an image and return the annotated image."""
|
| 12 |
+
# Convert PIL image to NumPy array
|
| 13 |
+
frame = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
| 14 |
+
|
| 15 |
+
# Run YOLO model
|
| 16 |
+
results = detection_model.predict(frame, conf=0.5, iou=0.6)
|
| 17 |
+
|
| 18 |
+
# Annotate the image
|
| 19 |
+
annotated_frame = results[0].plot()
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
out_pil_image = Image.fromarray(annotated_frame[..., ::-1])
|
| 23 |
+
return out_pil_image
|
| 24 |
+
|
| 25 |
+
def predict_video(video_path):
|
| 26 |
+
"""Process a video and return the path to the annotated output video."""
|
| 27 |
+
cap = cv2.VideoCapture(video_path)
|
| 28 |
+
output_frames = []
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
while cap.isOpened():
|
| 32 |
+
ret, frame = cap.read()
|
| 33 |
+
if not ret:
|
| 34 |
+
break
|
| 35 |
+
results = detection_model.predict(frame, conf=0.5, iou=0.6)
|
| 36 |
+
annotated_frame = results[0].plot()
|
| 37 |
+
output_frames.append(annotated_frame)
|
| 38 |
+
|
| 39 |
+
cap.release()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
if output_frames:
|
| 43 |
+
height, width, _ = output_frames[0].shape
|
| 44 |
+
out_path = "output_video.mp4"
|
| 45 |
+
out = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*"mp4v"), 30, (width, height))
|
| 46 |
+
for frame in output_frames:
|
| 47 |
+
out.write(frame)
|
| 48 |
+
out.release()
|
| 49 |
+
return out_path
|
| 50 |
+
else:
|
| 51 |
+
return "No frames processed."
|
| 52 |
+
|
| 53 |
+
def create_gradio_interface():
|
| 54 |
+
with gr.Blocks() as demo:
|
| 55 |
+
with gr.Tab("Upload and Honda or Toyota Logo image"):
|
| 56 |
+
gr.Markdown("### Upload Honda or Toyota for Object Detection")
|
| 57 |
+
image_input = gr.Image(type="pil", label="Input Image")
|
| 58 |
+
image_output = gr.Image(type="pil", label="Annotated Image")
|
| 59 |
+
image_button = gr.Button("Process Image")
|
| 60 |
+
image_button.click(fn=predict_image, inputs=image_input, outputs=image_output)
|
| 61 |
+
|
| 62 |
+
with gr.Tab("Video Upload"):
|
| 63 |
+
gr.Markdown("### Upload a Video for Object Detection")
|
| 64 |
+
video_input = gr.Video(label="Input Video")
|
| 65 |
+
video_output = gr.File(label="Annotated Video")
|
| 66 |
+
video_button = gr.Button("Process Video")
|
| 67 |
+
video_button.click(fn=predict_video, inputs=video_input, outputs=video_output)
|
| 68 |
+
|
| 69 |
+
demo.launch()
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
create_gradio_interface()
|