Spaces:
Running
Running
Eslam Magdy
commited on
Upload Allam_Backend_HF.py
Browse files- Allam_Backend_HF.py +267 -0
Allam_Backend_HF.py
ADDED
|
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import faiss
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import requests
|
| 6 |
+
import os
|
| 7 |
+
#import huggingface_hub
|
| 8 |
+
hf_token = os.getenv("hf_token")
|
| 9 |
+
#huggingface_hub.login(hf_token)
|
| 10 |
+
|
| 11 |
+
df = pd.read_excel("Allam_SA_Articles.xlsx")
|
| 12 |
+
input_texts = df['Article_text'].tolist()
|
| 13 |
+
MOJ_embeddings = np.load('Allam_embeddings.npy')
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def embed_single_text(query):
|
| 17 |
+
headers = {
|
| 18 |
+
"Authorization": f"Bearer {hf_token}"
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
url = f"https://allam-llm-e5-embeddings.hf.space/e5_embeddings?query={query}"
|
| 22 |
+
|
| 23 |
+
response = requests.get(url, headers=headers)
|
| 24 |
+
|
| 25 |
+
if response.status_code == 200:
|
| 26 |
+
return torch.tensor(response.json())
|
| 27 |
+
else:
|
| 28 |
+
print(f"Error: {response.status_code}")
|
| 29 |
+
return None
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
#Faiss
|
| 33 |
+
dimension = MOJ_embeddings.shape[1]
|
| 34 |
+
index = faiss.IndexFlatIP(dimension)
|
| 35 |
+
index.add(MOJ_embeddings)
|
| 36 |
+
|
| 37 |
+
def query_search(query, K):
|
| 38 |
+
query_embedding = embed_single_text(query)
|
| 39 |
+
distances, indices = index.search(query_embedding, K)
|
| 40 |
+
|
| 41 |
+
results = []
|
| 42 |
+
for idx in indices[0]:
|
| 43 |
+
file_id = df.iloc[idx]['File_ID']
|
| 44 |
+
row_number = df.iloc[idx]['Row_Number']
|
| 45 |
+
#results.append((file_id, row_number))
|
| 46 |
+
results.append(idx)
|
| 47 |
+
return results
|
| 48 |
+
|
| 49 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 50 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 51 |
+
|
| 52 |
+
def return_top5_chunks(query):
|
| 53 |
+
matching_indices = query_search(query, 15)
|
| 54 |
+
relevant_rows = df.iloc[matching_indices]
|
| 55 |
+
|
| 56 |
+
def chunk_text(text, max_words=150):
|
| 57 |
+
words = text.split()
|
| 58 |
+
return [' '.join(words[i:i+max_words]) for i in range(0, len(words), max_words)]
|
| 59 |
+
|
| 60 |
+
relevant_rows['Chunks'] = relevant_rows['Article_text'].apply(chunk_text)
|
| 61 |
+
|
| 62 |
+
chunked_texts = []
|
| 63 |
+
for idx, row in relevant_rows.iterrows():
|
| 64 |
+
for chunk in row['Chunks']:
|
| 65 |
+
chunked_texts.append((chunk, idx))
|
| 66 |
+
|
| 67 |
+
def find_top_k_similar(texts, query, k):
|
| 68 |
+
documents = [text for text, _ in texts]
|
| 69 |
+
|
| 70 |
+
vectorizer = TfidfVectorizer()
|
| 71 |
+
|
| 72 |
+
all_texts = documents + [query]
|
| 73 |
+
|
| 74 |
+
tfidf_matrix = vectorizer.fit_transform(all_texts)
|
| 75 |
+
|
| 76 |
+
similarities = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1]).flatten()
|
| 77 |
+
|
| 78 |
+
top_k_indices = similarities.argsort()[-k:][::-1]
|
| 79 |
+
return [(texts[i], similarities[i]) for i in top_k_indices]
|
| 80 |
+
|
| 81 |
+
top_5_chunks = find_top_k_similar(chunked_texts, query, 5)
|
| 82 |
+
|
| 83 |
+
chunks_txt = ''
|
| 84 |
+
for i, ((chunk, idx), similarity) in enumerate(top_5_chunks):
|
| 85 |
+
chunks_txt += f"Index: {idx},\nChunk: {chunk}\n"
|
| 86 |
+
|
| 87 |
+
if i < len(top_5_chunks) - 1:
|
| 88 |
+
chunks_txt += "##########\n"
|
| 89 |
+
|
| 90 |
+
return chunks_txt
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
import requests
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
api_key = 'UEGtyhQpPCKfhsQ_rPlBbEsgZErSh8xPU57qm9DQ-ZkC'
|
| 97 |
+
|
| 98 |
+
url = "https://iam.cloud.ibm.com/identity/token"
|
| 99 |
+
|
| 100 |
+
headers = {
|
| 101 |
+
"Content-Type": "application/x-www-form-urlencoded"
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
data = {
|
| 105 |
+
"grant_type": "urn:ibm:params:oauth:grant-type:apikey",
|
| 106 |
+
"apikey": api_key
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
response = requests.post(url, headers=headers, data=data)
|
| 110 |
+
token_info = response.json()
|
| 111 |
+
access_token = token_info['access_token']
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def allam_response(context, query):
|
| 117 |
+
url = "https://eu-de.ml.cloud.ibm.com/ml/v1/text/generation?version=2023-05-29"
|
| 118 |
+
|
| 119 |
+
input_text_base = f"""
|
| 120 |
+
[Context]: {context}
|
| 121 |
+
[System]:
|
| 122 |
+
You are an Arabic frindley chatbot named مستنير.
|
| 123 |
+
You will be provided with an Arabic context ,
|
| 124 |
+
Your task is to extract and Answer for the questions only from the context provided
|
| 125 |
+
elaborate on the answer from the context
|
| 126 |
+
At the end of your response mention the Article : مادة
|
| 127 |
+
if no answer is found apologize
|
| 128 |
+
|
| 129 |
+
Question: {query}
|
| 130 |
+
"""
|
| 131 |
+
body = {
|
| 132 |
+
"input": input_text_base,
|
| 133 |
+
"parameters": {
|
| 134 |
+
"decoding_method": "greedy",
|
| 135 |
+
"max_new_tokens": 900,
|
| 136 |
+
"min_new_tokens": 0,
|
| 137 |
+
"stop_sequences": [],
|
| 138 |
+
"repetition_penalty": 1
|
| 139 |
+
},
|
| 140 |
+
"model_id": "sdaia/allam-1-13b-instruct",
|
| 141 |
+
"project_id": "72a4dcd4-e6e9-4cdc-9c7e-1a0ef1483936"
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
headers = {
|
| 145 |
+
"Accept": "application/json",
|
| 146 |
+
"Content-Type": "application/json",
|
| 147 |
+
"Authorization": f"Bearer {access_token}"
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
response = requests.post(url, headers=headers, json=body)
|
| 151 |
+
|
| 152 |
+
if response.status_code != 200:
|
| 153 |
+
raise Exception("Non-200 response: " + str(response.text))
|
| 154 |
+
|
| 155 |
+
response = response.json()
|
| 156 |
+
|
| 157 |
+
return response['results'][0]['generated_text']
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
import json
|
| 162 |
+
|
| 163 |
+
import re
|
| 164 |
+
|
| 165 |
+
def index_num(text):
|
| 166 |
+
|
| 167 |
+
match = re.search(r'"Index":\s*"(\d+)"', text)
|
| 168 |
+
index_number = match.group(1) if match else None
|
| 169 |
+
|
| 170 |
+
return int(index_number)
|
| 171 |
+
|
| 172 |
+
def get_top_matching_chunk(text, query, max_words=500):
|
| 173 |
+
def chunk_text(text, max_words):
|
| 174 |
+
words = text.split()
|
| 175 |
+
return [' '.join(words[i:i+max_words]) for i in range(0, len(words), max_words)]
|
| 176 |
+
|
| 177 |
+
chunks = chunk_text(text, max_words)
|
| 178 |
+
|
| 179 |
+
vectorizer = TfidfVectorizer()
|
| 180 |
+
all_texts = chunks + [query]
|
| 181 |
+
tfidf_matrix = vectorizer.fit_transform(all_texts)
|
| 182 |
+
|
| 183 |
+
similarities = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1]).flatten()
|
| 184 |
+
|
| 185 |
+
top_chunk_index = similarities.argmax()
|
| 186 |
+
|
| 187 |
+
return chunks[top_chunk_index]
|
| 188 |
+
|
| 189 |
+
def reformat_indentation(text, indent_spaces=4):
|
| 190 |
+
indent = ' ' * indent_spaces
|
| 191 |
+
|
| 192 |
+
lines = text.splitlines()
|
| 193 |
+
|
| 194 |
+
formatted_lines = [indent + line.strip() for line in lines]
|
| 195 |
+
|
| 196 |
+
return '\n'.join(formatted_lines)
|
| 197 |
+
|
| 198 |
+
def return_index_num(data_text, query):
|
| 199 |
+
|
| 200 |
+
url = "https://eu-de.ml.cloud.ibm.com/ml/v1/text/generation?version=2023-05-29"
|
| 201 |
+
|
| 202 |
+
sys_prompt = """
|
| 203 |
+
Identify the **first** Index chunk with the answer to a given question.
|
| 204 |
+
Chunks are seperated by ##########
|
| 205 |
+
Respond only with **Json** format **do not return any words**:
|
| 206 |
+
|
| 207 |
+
{"Index": "extracted_Index"}
|
| 208 |
+
|
| 209 |
+
Or:
|
| 210 |
+
|
| 211 |
+
{"Index": "not_found"}
|
| 212 |
+
|
| 213 |
+
**No additional text allowed**.
|
| 214 |
+
|
| 215 |
+
"""
|
| 216 |
+
sys_prompt += f"Question : {query}"
|
| 217 |
+
|
| 218 |
+
input_text = f"""
|
| 219 |
+
[Context]: {data_text.strip()}
|
| 220 |
+
[System]: {sys_prompt.strip()}
|
| 221 |
+
"""
|
| 222 |
+
|
| 223 |
+
input_text = reformat_indentation(input_text, indent_spaces=0)
|
| 224 |
+
body = {
|
| 225 |
+
"input": input_text,
|
| 226 |
+
"parameters": {
|
| 227 |
+
"decoding_method": "greedy",
|
| 228 |
+
"max_new_tokens": 20,
|
| 229 |
+
"repetition_penalty": 1
|
| 230 |
+
},
|
| 231 |
+
"model_id": "sdaia/allam-1-13b-instruct",
|
| 232 |
+
"project_id": "72a4dcd4-e6e9-4cdc-9c7e-1a0ef1483936"
|
| 233 |
+
}
|
| 234 |
+
|
| 235 |
+
headers = {
|
| 236 |
+
"Accept": "application/json",
|
| 237 |
+
"Content-Type": "application/json",
|
| 238 |
+
"Authorization": f"Bearer {access_token}" # access_token must be defined elsewhere
|
| 239 |
+
}
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
response = requests.post(url, headers=headers, json=body)
|
| 243 |
+
|
| 244 |
+
if response.status_code != 200:
|
| 245 |
+
raise Exception("Non-200 response: " + str(response.text))
|
| 246 |
+
|
| 247 |
+
response = response.json()
|
| 248 |
+
|
| 249 |
+
return(response['results'][0]['generated_text'])
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def allam_llm(q):
|
| 254 |
+
|
| 255 |
+
chunks_text = return_top5_chunks(q)
|
| 256 |
+
|
| 257 |
+
targeted_chunk = return_index_num(chunks_text, q)
|
| 258 |
+
|
| 259 |
+
index_number = index_num(targeted_chunk)
|
| 260 |
+
|
| 261 |
+
text_to_chunk = df['Article_text'][index_number]
|
| 262 |
+
|
| 263 |
+
top_chunk = get_top_matching_chunk(text_to_chunk, q)
|
| 264 |
+
|
| 265 |
+
allam_res = allam_response(top_chunk, q)
|
| 266 |
+
|
| 267 |
+
return allam_res
|