Spaces:
Running
Running
| import os | |
| import requests | |
| from tqdm import tqdm | |
| import shutil | |
| from PIL import Image, ImageOps | |
| import numpy as np | |
| import cv2 | |
| def load_cn_model(model_dir): | |
| folder = model_dir | |
| file_name = 'diffusion_pytorch_model.safetensors' | |
| url = "https://huggingface.co/kataragi/ControlNet-LineartXL/resolve/main/Katarag_lineartXL-fp16.safetensors" | |
| file_path = os.path.join(folder, file_name) | |
| if not os.path.exists(file_path): | |
| response = requests.get(url, stream=True) | |
| total_size = int(response.headers.get('content-length', 0)) | |
| with open(file_path, 'wb') as f, tqdm( | |
| desc=file_name, | |
| total=total_size, | |
| unit='iB', | |
| unit_scale=True, | |
| unit_divisor=1024, | |
| ) as bar: | |
| for data in response.iter_content(chunk_size=1024): | |
| size = f.write(data) | |
| bar.update(size) | |
| def load_cn_config(model_dir): | |
| folder = model_dir | |
| file_name = 'config.json' | |
| file_path = os.path.join(folder, file_name) | |
| if not os.path.exists(file_path): | |
| config_path = os.path.join(os.getcwd(), file_name) | |
| shutil.copy(config_path, file_path) | |
| def resize_image_aspect_ratio(image): | |
| # 元の画像サイズを取得 | |
| original_width, original_height = image.size | |
| # アスペクト比を計算 | |
| aspect_ratio = original_width / original_height | |
| # 標準のアスペクト比サイズを定義 | |
| sizes = { | |
| 1: (1024, 1024), # 正方形 | |
| 4/3: (1152, 896), # 横長画像 | |
| 3/2: (1216, 832), | |
| 16/9: (1344, 768), | |
| 21/9: (1568, 672), | |
| 3/1: (1728, 576), | |
| 1/4: (512, 2048), # 縦長画像 | |
| 1/3: (576, 1728), | |
| 9/16: (768, 1344), | |
| 2/3: (832, 1216), | |
| 3/4: (896, 1152) | |
| } | |
| # 最も近いアスペクト比を見つける | |
| closest_aspect_ratio = min(sizes.keys(), key=lambda x: abs(x - aspect_ratio)) | |
| target_width, target_height = sizes[closest_aspect_ratio] | |
| # リサイズ処理 | |
| resized_image = image.resize((target_width, target_height), Image.ANTIALIAS) | |
| return resized_image | |
| def base_generation(size, color): | |
| canvas = Image.new("RGBA", size, color) | |
| return canvas |