Create engine/evaluate.py
Browse files- engine/evaluate.py +193 -0
engine/evaluate.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Nexus-Core Position Evaluator
|
| 3 |
+
Pure ResNet-20 CNN with 12-channel input
|
| 4 |
+
|
| 5 |
+
Research References:
|
| 6 |
+
- He et al. (2016) - Deep Residual Learning for Image Recognition
|
| 7 |
+
- Silver et al. (2017) - AlphaZero position evaluation
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import onnxruntime as ort
|
| 11 |
+
import numpy as np
|
| 12 |
+
import chess
|
| 13 |
+
import logging
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
from typing import Dict
|
| 16 |
+
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class NexusCoreEvaluator:
|
| 21 |
+
"""
|
| 22 |
+
Nexus-Core neural network evaluator
|
| 23 |
+
12-channel CNN input (simpler than Synapse-Base)
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
# Stockfish piece values for material calculation
|
| 27 |
+
PIECE_VALUES = {
|
| 28 |
+
chess.PAWN: 100,
|
| 29 |
+
chess.KNIGHT: 320,
|
| 30 |
+
chess.BISHOP: 330,
|
| 31 |
+
chess.ROOK: 500,
|
| 32 |
+
chess.QUEEN: 900,
|
| 33 |
+
chess.KING: 0
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
def __init__(self, model_path: str, num_threads: int = 2):
|
| 37 |
+
"""Initialize evaluator with ONNX model"""
|
| 38 |
+
|
| 39 |
+
self.model_path = Path(model_path)
|
| 40 |
+
if not self.model_path.exists():
|
| 41 |
+
raise FileNotFoundError(f"Model not found: {model_path}")
|
| 42 |
+
|
| 43 |
+
# ONNX Runtime session
|
| 44 |
+
sess_options = ort.SessionOptions()
|
| 45 |
+
sess_options.intra_op_num_threads = num_threads
|
| 46 |
+
sess_options.inter_op_num_threads = num_threads
|
| 47 |
+
sess_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
|
| 48 |
+
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
|
| 49 |
+
|
| 50 |
+
logger.info(f"Loading Nexus-Core model from {model_path}...")
|
| 51 |
+
self.session = ort.InferenceSession(
|
| 52 |
+
str(self.model_path),
|
| 53 |
+
sess_options=sess_options,
|
| 54 |
+
providers=['CPUExecutionProvider']
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
self.input_name = self.session.get_inputs()[0].name
|
| 58 |
+
self.output_name = self.session.get_outputs()[0].name
|
| 59 |
+
|
| 60 |
+
logger.info(f"✅ Model loaded: {self.input_name} -> {self.output_name}")
|
| 61 |
+
|
| 62 |
+
def fen_to_12_channel_tensor(self, board: chess.Board) -> np.ndarray:
|
| 63 |
+
"""
|
| 64 |
+
Convert board to 12-channel tensor
|
| 65 |
+
Channels: 6 white pieces + 6 black pieces
|
| 66 |
+
|
| 67 |
+
Args:
|
| 68 |
+
board: chess.Board object
|
| 69 |
+
|
| 70 |
+
Returns:
|
| 71 |
+
numpy array of shape (1, 12, 8, 8)
|
| 72 |
+
"""
|
| 73 |
+
tensor = np.zeros((1, 12, 8, 8), dtype=np.float32)
|
| 74 |
+
|
| 75 |
+
piece_to_channel = {
|
| 76 |
+
chess.PAWN: 0,
|
| 77 |
+
chess.KNIGHT: 1,
|
| 78 |
+
chess.BISHOP: 2,
|
| 79 |
+
chess.ROOK: 3,
|
| 80 |
+
chess.QUEEN: 4,
|
| 81 |
+
chess.KING: 5
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
# Fill piece positions
|
| 85 |
+
for square, piece in board.piece_map().items():
|
| 86 |
+
rank, file = divmod(square, 8)
|
| 87 |
+
channel = piece_to_channel[piece.piece_type]
|
| 88 |
+
|
| 89 |
+
# White pieces: channels 0-5
|
| 90 |
+
# Black pieces: channels 6-11
|
| 91 |
+
if piece.color == chess.BLACK:
|
| 92 |
+
channel += 6
|
| 93 |
+
|
| 94 |
+
tensor[0, channel, rank, file] = 1.0
|
| 95 |
+
|
| 96 |
+
return tensor
|
| 97 |
+
|
| 98 |
+
def evaluate_neural(self, board: chess.Board) -> float:
|
| 99 |
+
"""
|
| 100 |
+
Neural network evaluation
|
| 101 |
+
|
| 102 |
+
Args:
|
| 103 |
+
board: chess.Board object
|
| 104 |
+
|
| 105 |
+
Returns:
|
| 106 |
+
Evaluation score (centipawns from white's perspective)
|
| 107 |
+
"""
|
| 108 |
+
# Convert to tensor
|
| 109 |
+
input_tensor = self.fen_to_12_channel_tensor(board)
|
| 110 |
+
|
| 111 |
+
# Run inference
|
| 112 |
+
outputs = self.session.run(
|
| 113 |
+
[self.output_name],
|
| 114 |
+
{self.input_name: input_tensor}
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
# Extract value (tanh output in range [-1, 1])
|
| 118 |
+
raw_value = float(outputs[0][0][0])
|
| 119 |
+
|
| 120 |
+
# Convert to centipawns (scale by 400)
|
| 121 |
+
centipawns = raw_value * 400.0
|
| 122 |
+
|
| 123 |
+
return centipawns
|
| 124 |
+
|
| 125 |
+
def evaluate_material(self, board: chess.Board) -> int:
|
| 126 |
+
"""
|
| 127 |
+
Classical material evaluation
|
| 128 |
+
|
| 129 |
+
Args:
|
| 130 |
+
board: chess.Board object
|
| 131 |
+
|
| 132 |
+
Returns:
|
| 133 |
+
Material balance in centipawns
|
| 134 |
+
"""
|
| 135 |
+
material = 0
|
| 136 |
+
|
| 137 |
+
for piece_type in [chess.PAWN, chess.KNIGHT, chess.BISHOP,
|
| 138 |
+
chess.ROOK, chess.QUEEN]:
|
| 139 |
+
white_count = len(board.pieces(piece_type, chess.WHITE))
|
| 140 |
+
black_count = len(board.pieces(piece_type, chess.BLACK))
|
| 141 |
+
|
| 142 |
+
material += (white_count - black_count) * self.PIECE_VALUES[piece_type]
|
| 143 |
+
|
| 144 |
+
return material
|
| 145 |
+
|
| 146 |
+
def evaluate_hybrid(self, board: chess.Board) -> float:
|
| 147 |
+
"""
|
| 148 |
+
Hybrid evaluation: 90% neural + 10% material
|
| 149 |
+
|
| 150 |
+
Args:
|
| 151 |
+
board: chess.Board object
|
| 152 |
+
|
| 153 |
+
Returns:
|
| 154 |
+
Final evaluation score
|
| 155 |
+
"""
|
| 156 |
+
# Neural evaluation (primary)
|
| 157 |
+
neural_eval = self.evaluate_neural(board)
|
| 158 |
+
|
| 159 |
+
# Material evaluation (safety check)
|
| 160 |
+
material_eval = self.evaluate_material(board)
|
| 161 |
+
|
| 162 |
+
# Blend: 90% neural, 10% material
|
| 163 |
+
hybrid_eval = 0.90 * neural_eval + 0.10 * material_eval
|
| 164 |
+
|
| 165 |
+
# Flip for black's perspective
|
| 166 |
+
if board.turn == chess.BLACK:
|
| 167 |
+
hybrid_eval = -hybrid_eval
|
| 168 |
+
|
| 169 |
+
return hybrid_eval
|
| 170 |
+
|
| 171 |
+
def evaluate_mobility(self, board: chess.Board) -> int:
|
| 172 |
+
"""
|
| 173 |
+
Mobility evaluation (number of legal moves)
|
| 174 |
+
|
| 175 |
+
Args:
|
| 176 |
+
board: chess.Board object
|
| 177 |
+
|
| 178 |
+
Returns:
|
| 179 |
+
Mobility score
|
| 180 |
+
"""
|
| 181 |
+
current_mobility = board.legal_moves.count()
|
| 182 |
+
|
| 183 |
+
# Flip turn to count opponent mobility
|
| 184 |
+
board.push(chess.Move.null())
|
| 185 |
+
opponent_mobility = board.legal_moves.count()
|
| 186 |
+
board.pop()
|
| 187 |
+
|
| 188 |
+
# Mobility difference
|
| 189 |
+
return (current_mobility - opponent_mobility) * 5
|
| 190 |
+
|
| 191 |
+
def get_model_size_mb(self) -> float:
|
| 192 |
+
"""Get model size in MB"""
|
| 193 |
+
return self.model_path.stat().st_size / (1024 * 1024)
|