Spaces:
Sleeping
Sleeping
File size: 11,061 Bytes
3a461b8 f8af6f0 3a461b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
"""
GambitFlow Bridge API - HuggingFace Space
Unified API gateway with Firebase analytics and rate limiting
"""
from flask import Flask, request, jsonify, Response
from flask_cors import CORS
import requests
import time
import os
from functools import wraps
import firebase_admin
from firebase_admin import credentials, db
import json
app = Flask(__name__)
CORS(app)
# ==================== FIREBASE SETUP ====================
def initialize_firebase():
"""Initialize Firebase Admin SDK"""
try:
# Load credentials from environment variable
firebase_creds = os.getenv('FIREBASE_CREDENTIALS')
if firebase_creds:
cred_dict = json.loads(firebase_creds)
cred = credentials.Certificate(cred_dict)
else:
# Fallback to service account file
cred = credentials.Certificate('firebase-credentials.json')
firebase_admin.initialize_app(cred, {
'databaseURL': os.getenv('FIREBASE_DATABASE_URL', 'https://chess-web-78351-default-rtdb.asia-southeast1.firebasedatabase.app')
})
print("✅ Firebase initialized successfully")
except Exception as e:
print(f"⚠️ Firebase initialization failed: {e}")
# Initialize Firebase
initialize_firebase()
# ==================== MODEL CONFIGURATION ====================
MODELS = {
'nano': {
'name': 'Nexus-Nano',
'endpoint': os.getenv('NANO_ENDPOINT', 'https://gambitflow-nexus-nano-inference-api.hf.space'),
'timeout': 30
},
'core': {
'name': 'Nexus-Core',
'endpoint': os.getenv('CORE_ENDPOINT', 'https://gambitflow-nexus-core-inference-api.hf.space'),
'timeout': 40
},
'base': {
'name': 'Synapse-Base',
'endpoint': os.getenv('BASE_ENDPOINT', 'https://gambitflow-synapse-base-inference-api.hf.space'),
'timeout': 60
}
}
# ==================== FIREBASE ANALYTICS ====================
def increment_stats(model_name, stat_type='moves'):
"""
Increment statistics in Firebase
stat_type: 'moves' or 'matches'
"""
try:
ref = db.reference('stats')
# Increment total stats
total_ref = ref.child('total').child(stat_type)
current = total_ref.get() or 0
total_ref.set(current + 1)
# Increment model-specific stats
model_ref = ref.child('models').child(model_name).child(stat_type)
current = model_ref.get() or 0
model_ref.set(current + 1)
# Update last_updated timestamp
ref.child('last_updated').set(int(time.time()))
except Exception as e:
print(f"Firebase stats update error: {e}")
def get_all_stats():
"""Get all statistics from Firebase"""
try:
ref = db.reference('stats')
stats = ref.get() or {}
if not stats:
# Initialize default structure
stats = {
'total': {'moves': 0, 'matches': 0},
'models': {
'nano': {'moves': 0, 'matches': 0},
'core': {'moves': 0, 'matches': 0},
'base': {'moves': 0, 'matches': 0}
},
'last_updated': int(time.time())
}
ref.set(stats)
return stats
except Exception as e:
print(f"Firebase stats fetch error: {e}")
return {
'total': {'moves': 0, 'matches': 0},
'models': {
'nano': {'moves': 0, 'matches': 0},
'core': {'moves': 0, 'matches': 0},
'base': {'moves': 0, 'matches': 0}
},
'last_updated': int(time.time())
}
# ==================== CACHE ====================
class SimpleCache:
def __init__(self, ttl=300):
self.cache = {}
self.ttl = ttl
def get(self, key):
if key in self.cache:
value, timestamp = self.cache[key]
if time.time() - timestamp < self.ttl:
return value
del self.cache[key]
return None
def set(self, key, value):
self.cache[key] = (value, time.time())
def clear_old(self):
current_time = time.time()
expired = [k for k, (_, t) in self.cache.items() if current_time - t >= self.ttl]
for k in expired:
del self.cache[k]
cache = SimpleCache(ttl=300)
# ==================== ROUTES ====================
@app.route('/')
def index():
"""API documentation"""
return jsonify({
'name': 'GambitFlow Bridge API',
'version': '1.0.0',
'description': 'Unified gateway for all GambitFlow chess engines',
'endpoints': {
'/predict': 'POST - Get best move prediction',
'/health': 'GET - Health check',
'/stats': 'GET - Get usage statistics',
'/models': 'GET - List available models'
},
'models': list(MODELS.keys())
})
@app.route('/health')
def health():
"""Health check endpoint"""
return jsonify({
'status': 'healthy',
'timestamp': int(time.time()),
'models': len(MODELS),
'cache_size': len(cache.cache)
})
@app.route('/stats')
def get_stats():
"""Get usage statistics from Firebase"""
stats = get_all_stats()
return jsonify(stats)
@app.route('/models')
def list_models():
"""List all available models"""
models_info = {}
for key, config in MODELS.items():
models_info[key] = {
'name': config['name'],
'endpoint': config['endpoint'],
'timeout': config['timeout']
}
return jsonify({'models': models_info})
@app.route('/predict', methods=['POST'])
def predict():
"""
Main prediction endpoint
Forwards request to appropriate model and tracks statistics
"""
try:
data = request.get_json()
if not data:
return jsonify({'error': 'No data provided'}), 400
# Extract parameters
fen = data.get('fen')
model = data.get('model', 'core')
depth = data.get('depth', 5)
time_limit = data.get('time_limit', 3000)
track_stats = data.get('track_stats', True) # Allow disabling stats tracking
if not fen:
return jsonify({'error': 'FEN position required'}), 400
if model not in MODELS:
return jsonify({'error': f'Invalid model: {model}'}), 400
# Check cache
cache_key = f"{model}:{fen}:{depth}:{time_limit}"
cached = cache.get(cache_key)
if cached:
cached['from_cache'] = True
if track_stats:
increment_stats(model, 'moves')
return jsonify(cached)
# Forward to model API
model_config = MODELS[model]
endpoint = f"{model_config['endpoint']}/predict"
response = requests.post(
endpoint,
json={
'fen': fen,
'depth': depth,
'time_limit': time_limit
},
timeout=model_config['timeout']
)
if response.status_code == 200:
result = response.json()
# Cache the result
cache.set(cache_key, result)
# Track statistics in Firebase
if track_stats:
increment_stats(model, 'moves')
result['from_cache'] = False
result['model'] = model
return jsonify(result)
else:
return jsonify({
'error': 'Model API error',
'status_code': response.status_code,
'details': response.text
}), response.status_code
except requests.Timeout:
return jsonify({'error': 'Request timeout'}), 504
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/match/start', methods=['POST'])
def start_match():
"""Track match start"""
try:
data = request.get_json()
model = data.get('model', 'core')
if model not in MODELS:
return jsonify({'error': 'Invalid model'}), 400
increment_stats(model, 'matches')
return jsonify({
'success': True,
'model': model,
'message': 'Match started'
})
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/batch', methods=['POST'])
def batch_predict():
"""
Batch prediction endpoint for multiple positions
"""
try:
data = request.get_json()
positions = data.get('positions', [])
model = data.get('model', 'core')
if not positions:
return jsonify({'error': 'No positions provided'}), 400
if len(positions) > 10:
return jsonify({'error': 'Maximum 10 positions per batch'}), 400
results = []
for pos in positions:
fen = pos.get('fen')
depth = pos.get('depth', 5)
time_limit = pos.get('time_limit', 3000)
# Make individual request
pred_data = {
'fen': fen,
'model': model,
'depth': depth,
'time_limit': time_limit,
'track_stats': False # Don't track for batch
}
result = predict_single(pred_data)
results.append(result)
# Track batch as single operation
increment_stats(model, 'moves')
return jsonify({
'success': True,
'count': len(results),
'results': results
})
except Exception as e:
return jsonify({'error': str(e)}), 500
def predict_single(data):
"""Helper function for single prediction"""
try:
fen = data.get('fen')
model = data.get('model', 'core')
depth = data.get('depth', 5)
time_limit = data.get('time_limit', 3000)
model_config = MODELS[model]
endpoint = f"{model_config['endpoint']}/predict"
response = requests.post(
endpoint,
json={
'fen': fen,
'depth': depth,
'time_limit': time_limit
},
timeout=model_config['timeout']
)
if response.status_code == 200:
return response.json()
else:
return {'error': 'Prediction failed'}
except:
return {'error': 'Request failed'}
# ==================== CLEANUP ====================
@app.before_request
def before_request():
"""Clean old cache entries before each request"""
cache.clear_old()
# ==================== RUN ====================
if __name__ == '__main__':
port = int(os.getenv('PORT', 7860))
app.run(host='0.0.0.0', port=port, debug=False) |