Spaces:
Paused
Paused
add text mapping process
Browse files- .ipynb_checkpoints/app-checkpoint.py +0 -56
- .ipynb_checkpoints/eval_and_inference-checkpoint.ipynb +0 -279
- .ipynb_checkpoints/eval_and_inference_lite_v1-checkpoint.ipynb +0 -189
- .ipynb_checkpoints/text_label-checkpoint.json +0 -528
- .ipynb_checkpoints/text_mapping_example-checkpoint.ipynb +0 -90
- app.py +10 -3
- text_mapping_example.ipynb +1 -1
- utils/__init__.py +0 -0
- utils/postprocess.py +8 -0
.ipynb_checkpoints/app-checkpoint.py
DELETED
|
@@ -1,56 +0,0 @@
|
|
| 1 |
-
# Gaepago model V1 (CPU Test)
|
| 2 |
-
|
| 3 |
-
# import package
|
| 4 |
-
from transformers import AutoModelForAudioClassification
|
| 5 |
-
from transformers import AutoFeatureExtractor
|
| 6 |
-
from transformers import pipeline
|
| 7 |
-
from datasets import Dataset, Audio
|
| 8 |
-
import gradio as gr
|
| 9 |
-
import torch
|
| 10 |
-
|
| 11 |
-
# Set model & Dataset NM
|
| 12 |
-
MODEL_NAME = "Gae8J/gaepago-20"
|
| 13 |
-
DATASET_NAME = "Gae8J/modeling_v1"
|
| 14 |
-
|
| 15 |
-
# Import Model & feature extractor
|
| 16 |
-
# model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)
|
| 17 |
-
from transformers import AutoConfig
|
| 18 |
-
config = AutoConfig.from_pretrained(MODEL_NAME)
|
| 19 |
-
model = torch.jit.load(f"./model/gaepago-20-lite/model_quant_int8.pt")
|
| 20 |
-
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
|
| 21 |
-
|
| 22 |
-
# ๋ชจ๋ธ cpu๋ก ๋ณ๊ฒฝํ์ฌ ์งํ
|
| 23 |
-
model.to("cpu")
|
| 24 |
-
|
| 25 |
-
# Gaepago Inference Model function
|
| 26 |
-
def gaepago_fn(tmp_audio_dir):
|
| 27 |
-
print(tmp_audio_dir)
|
| 28 |
-
audio_dataset = Dataset.from_dict({"audio": [tmp_audio_dir]}).cast_column("audio", Audio(sampling_rate=16000))
|
| 29 |
-
inputs = feature_extractor(audio_dataset[0]["audio"]["array"]
|
| 30 |
-
,sampling_rate=audio_dataset[0]["audio"]["sampling_rate"]
|
| 31 |
-
,return_tensors="pt")
|
| 32 |
-
with torch.no_grad():
|
| 33 |
-
# logits = model(**inputs).logits
|
| 34 |
-
logits = model(**inputs)["logits"]
|
| 35 |
-
# predicted_class_ids = torch.argmax(logits).item()
|
| 36 |
-
# predicted_label = model.config.id2label[predicted_class_ids]
|
| 37 |
-
predicted_class_ids = torch.argmax(logits).item()
|
| 38 |
-
predicted_label = config.id2label[predicted_class_ids]
|
| 39 |
-
|
| 40 |
-
return predicted_label
|
| 41 |
-
|
| 42 |
-
# Main
|
| 43 |
-
main_api = gr.Blocks()
|
| 44 |
-
|
| 45 |
-
with main_api:
|
| 46 |
-
gr.Markdown("## 8J Gaepago Demo(with CPU)")
|
| 47 |
-
with gr.Row():
|
| 48 |
-
audio = gr.Audio(source="microphone", type="filepath"
|
| 49 |
-
,label='๋
น์๋ฒํผ์ ๋๋ฌ ์ด์ฝ๊ฐ ํ๋ ๋ง์ ๋ค๋ ค์ฃผ์ธ์')
|
| 50 |
-
transcription = gr.Textbox(label='์ง๊ธ ์ด์ฝ๊ฐ ํ๋ ๋ง์...')
|
| 51 |
-
b1 = gr.Button("๊ฐ์์ง ์ธ์ด ๋ฒ์ญ!")
|
| 52 |
-
|
| 53 |
-
b1.click(gaepago_fn, inputs=audio, outputs=transcription)
|
| 54 |
-
# examples = gr.Examples(examples=example_list,
|
| 55 |
-
# inputs=[audio])
|
| 56 |
-
main_api.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/eval_and_inference-checkpoint.ipynb
DELETED
|
@@ -1,279 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "markdown",
|
| 5 |
-
"id": "544a588c-68ff-440f-be5c-389f1f02a0b7",
|
| 6 |
-
"metadata": {},
|
| 7 |
-
"source": [
|
| 8 |
-
"# example"
|
| 9 |
-
]
|
| 10 |
-
},
|
| 11 |
-
{
|
| 12 |
-
"cell_type": "code",
|
| 13 |
-
"execution_count": 1,
|
| 14 |
-
"id": "7ef8c97c-cefd-4905-8d63-af303c412d1a",
|
| 15 |
-
"metadata": {},
|
| 16 |
-
"outputs": [],
|
| 17 |
-
"source": [
|
| 18 |
-
"MODEL_NAME = \"gaepago-20\"\n",
|
| 19 |
-
"DATASET_NAME = \"Gae8J/modeling_v1\""
|
| 20 |
-
]
|
| 21 |
-
},
|
| 22 |
-
{
|
| 23 |
-
"cell_type": "markdown",
|
| 24 |
-
"id": "044499ce-7821-4b59-9f4b-5971b6a24cce",
|
| 25 |
-
"metadata": {},
|
| 26 |
-
"source": [
|
| 27 |
-
"## load dataset (test data)"
|
| 28 |
-
]
|
| 29 |
-
},
|
| 30 |
-
{
|
| 31 |
-
"cell_type": "code",
|
| 32 |
-
"execution_count": 2,
|
| 33 |
-
"id": "e827e3bb-820d-46b3-b2e8-fdb97787bde1",
|
| 34 |
-
"metadata": {},
|
| 35 |
-
"outputs": [
|
| 36 |
-
{
|
| 37 |
-
"name": "stderr",
|
| 38 |
-
"output_type": "stream",
|
| 39 |
-
"text": [
|
| 40 |
-
"Found cached dataset parquet (/home/jovyan/.cache/huggingface/datasets/Gae8J___parquet/Gae8J--modeling_v1-b480c78c61a26816/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
|
| 41 |
-
]
|
| 42 |
-
},
|
| 43 |
-
{
|
| 44 |
-
"data": {
|
| 45 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 46 |
-
"model_id": "f078fd108d2044b48a961bee6ed49747",
|
| 47 |
-
"version_major": 2,
|
| 48 |
-
"version_minor": 0
|
| 49 |
-
},
|
| 50 |
-
"text/plain": [
|
| 51 |
-
" 0%| | 0/3 [00:00<?, ?it/s]"
|
| 52 |
-
]
|
| 53 |
-
},
|
| 54 |
-
"metadata": {},
|
| 55 |
-
"output_type": "display_data"
|
| 56 |
-
}
|
| 57 |
-
],
|
| 58 |
-
"source": [
|
| 59 |
-
"from datasets import load_dataset, Audio\n",
|
| 60 |
-
"\n",
|
| 61 |
-
"dataset = load_dataset(DATASET_NAME)\n",
|
| 62 |
-
"dataset = dataset.cast_column(\"audio\", Audio(sampling_rate=16000))\n",
|
| 63 |
-
"test_data = dataset['test']\n",
|
| 64 |
-
"sampling_rate = test_data.features[\"audio\"].sampling_rate"
|
| 65 |
-
]
|
| 66 |
-
},
|
| 67 |
-
{
|
| 68 |
-
"cell_type": "markdown",
|
| 69 |
-
"id": "d0c16b3d-32dd-4e61-86bd-e21232840e98",
|
| 70 |
-
"metadata": {},
|
| 71 |
-
"source": [
|
| 72 |
-
"## run"
|
| 73 |
-
]
|
| 74 |
-
},
|
| 75 |
-
{
|
| 76 |
-
"cell_type": "code",
|
| 77 |
-
"execution_count": 5,
|
| 78 |
-
"id": "d504778d-4ba3-43d3-b22b-76ce838a5edf",
|
| 79 |
-
"metadata": {},
|
| 80 |
-
"outputs": [],
|
| 81 |
-
"source": [
|
| 82 |
-
"from transformers import AutoModelForAudioClassification\n",
|
| 83 |
-
"from transformers import AutoFeatureExtractor\n",
|
| 84 |
-
"import torch\n",
|
| 85 |
-
"\n",
|
| 86 |
-
"model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)\n",
|
| 87 |
-
"feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)\n",
|
| 88 |
-
"\n",
|
| 89 |
-
"preds = []\n",
|
| 90 |
-
"gts = []\n",
|
| 91 |
-
"for i in range(len(test_data)):\n",
|
| 92 |
-
" inputs = feature_extractor(test_data[i][\"audio\"][\"array\"], sampling_rate=sampling_rate, return_tensors=\"pt\")\n",
|
| 93 |
-
" with torch.no_grad():\n",
|
| 94 |
-
" logits = model(**inputs).logits\n",
|
| 95 |
-
" predicted_class_ids = torch.argmax(logits).item()\n",
|
| 96 |
-
" predicted_label = model.config.id2label[predicted_class_ids]\n",
|
| 97 |
-
" preds.append(predicted_label)\n",
|
| 98 |
-
" gts.append(model.config.id2label[test_data[i]['label']])"
|
| 99 |
-
]
|
| 100 |
-
},
|
| 101 |
-
{
|
| 102 |
-
"cell_type": "markdown",
|
| 103 |
-
"id": "f200bec5-c2d9-4549-8bb8-1400c484f499",
|
| 104 |
-
"metadata": {},
|
| 105 |
-
"source": [
|
| 106 |
-
"## performance"
|
| 107 |
-
]
|
| 108 |
-
},
|
| 109 |
-
{
|
| 110 |
-
"cell_type": "code",
|
| 111 |
-
"execution_count": 6,
|
| 112 |
-
"id": "be97683d-da60-4d23-abc9-0be9b86cd636",
|
| 113 |
-
"metadata": {},
|
| 114 |
-
"outputs": [
|
| 115 |
-
{
|
| 116 |
-
"name": "stdout",
|
| 117 |
-
"output_type": "stream",
|
| 118 |
-
"text": [
|
| 119 |
-
" precision recall f1-score support\n",
|
| 120 |
-
"\n",
|
| 121 |
-
" bark 0.56 0.62 0.59 8\n",
|
| 122 |
-
" growling 1.00 0.83 0.91 6\n",
|
| 123 |
-
" howl 0.75 0.86 0.80 7\n",
|
| 124 |
-
" panting 1.00 0.80 0.89 10\n",
|
| 125 |
-
" whimper 0.38 0.43 0.40 7\n",
|
| 126 |
-
"\n",
|
| 127 |
-
" accuracy 0.71 38\n",
|
| 128 |
-
" macro avg 0.74 0.71 0.72 38\n",
|
| 129 |
-
"weighted avg 0.75 0.71 0.72 38\n",
|
| 130 |
-
"\n"
|
| 131 |
-
]
|
| 132 |
-
}
|
| 133 |
-
],
|
| 134 |
-
"source": [
|
| 135 |
-
"from sklearn.metrics import classification_report\n",
|
| 136 |
-
"test_performance = classification_report(gts, preds)\n",
|
| 137 |
-
"print(test_performance)"
|
| 138 |
-
]
|
| 139 |
-
},
|
| 140 |
-
{
|
| 141 |
-
"cell_type": "markdown",
|
| 142 |
-
"id": "ea3ee48d-19c7-4f9d-9c2c-4b03d4748acb",
|
| 143 |
-
"metadata": {},
|
| 144 |
-
"source": [
|
| 145 |
-
"## load dataset (validation data)"
|
| 146 |
-
]
|
| 147 |
-
},
|
| 148 |
-
{
|
| 149 |
-
"cell_type": "code",
|
| 150 |
-
"execution_count": 7,
|
| 151 |
-
"id": "33e5051e-75a2-4523-905c-fe1dbc81eda2",
|
| 152 |
-
"metadata": {},
|
| 153 |
-
"outputs": [
|
| 154 |
-
{
|
| 155 |
-
"name": "stderr",
|
| 156 |
-
"output_type": "stream",
|
| 157 |
-
"text": [
|
| 158 |
-
"WARNING:datasets.builder:Found cached dataset parquet (/home/jovyan/.cache/huggingface/datasets/Gae8J___parquet/Gae8J--modeling_v1-b480c78c61a26816/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
|
| 159 |
-
]
|
| 160 |
-
},
|
| 161 |
-
{
|
| 162 |
-
"data": {
|
| 163 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 164 |
-
"model_id": "cf5cfe439c174b8284b4668419af6dca",
|
| 165 |
-
"version_major": 2,
|
| 166 |
-
"version_minor": 0
|
| 167 |
-
},
|
| 168 |
-
"text/plain": [
|
| 169 |
-
" 0%| | 0/3 [00:00<?, ?it/s]"
|
| 170 |
-
]
|
| 171 |
-
},
|
| 172 |
-
"metadata": {},
|
| 173 |
-
"output_type": "display_data"
|
| 174 |
-
}
|
| 175 |
-
],
|
| 176 |
-
"source": [
|
| 177 |
-
"from datasets import load_dataset, Audio\n",
|
| 178 |
-
"\n",
|
| 179 |
-
"dataset = load_dataset(DATASET_NAME)\n",
|
| 180 |
-
"dataset = dataset.cast_column(\"audio\", Audio(sampling_rate=16000))\n",
|
| 181 |
-
"test_data = dataset['validation']\n",
|
| 182 |
-
"sampling_rate = test_data.features[\"audio\"].sampling_rate"
|
| 183 |
-
]
|
| 184 |
-
},
|
| 185 |
-
{
|
| 186 |
-
"cell_type": "markdown",
|
| 187 |
-
"id": "36bee3b3-e66f-46dc-8030-cef3cb62ff97",
|
| 188 |
-
"metadata": {},
|
| 189 |
-
"source": [
|
| 190 |
-
"## run"
|
| 191 |
-
]
|
| 192 |
-
},
|
| 193 |
-
{
|
| 194 |
-
"cell_type": "code",
|
| 195 |
-
"execution_count": 9,
|
| 196 |
-
"id": "914a471c-5d76-482b-a4f3-3c5eeebdd697",
|
| 197 |
-
"metadata": {},
|
| 198 |
-
"outputs": [],
|
| 199 |
-
"source": [
|
| 200 |
-
"from transformers import AutoModelForAudioClassification\n",
|
| 201 |
-
"import torch\n",
|
| 202 |
-
"\n",
|
| 203 |
-
"model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)\n",
|
| 204 |
-
"feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)\n",
|
| 205 |
-
"\n",
|
| 206 |
-
"preds = []\n",
|
| 207 |
-
"gts = []\n",
|
| 208 |
-
"for i in range(len(test_data)):\n",
|
| 209 |
-
" inputs = feature_extractor(test_data[i][\"audio\"][\"array\"], sampling_rate=sampling_rate, return_tensors=\"pt\")\n",
|
| 210 |
-
" with torch.no_grad():\n",
|
| 211 |
-
" logits = model(**inputs).logits\n",
|
| 212 |
-
" predicted_class_ids = torch.argmax(logits).item()\n",
|
| 213 |
-
" predicted_label = model.config.id2label[predicted_class_ids]\n",
|
| 214 |
-
" preds.append(predicted_label)\n",
|
| 215 |
-
" gts.append(model.config.id2label[test_data[i]['label']])"
|
| 216 |
-
]
|
| 217 |
-
},
|
| 218 |
-
{
|
| 219 |
-
"cell_type": "markdown",
|
| 220 |
-
"id": "4f1d5bab-4f88-4628-918e-d14b29c2143b",
|
| 221 |
-
"metadata": {},
|
| 222 |
-
"source": [
|
| 223 |
-
"## performance"
|
| 224 |
-
]
|
| 225 |
-
},
|
| 226 |
-
{
|
| 227 |
-
"cell_type": "code",
|
| 228 |
-
"execution_count": 10,
|
| 229 |
-
"id": "26e0c704-b5b6-4bf0-8b58-1e3615b76cb7",
|
| 230 |
-
"metadata": {},
|
| 231 |
-
"outputs": [
|
| 232 |
-
{
|
| 233 |
-
"name": "stdout",
|
| 234 |
-
"output_type": "stream",
|
| 235 |
-
"text": [
|
| 236 |
-
" precision recall f1-score support\n",
|
| 237 |
-
"\n",
|
| 238 |
-
" bark 0.75 0.67 0.71 9\n",
|
| 239 |
-
" growling 1.00 0.71 0.83 7\n",
|
| 240 |
-
" howl 0.86 0.86 0.86 7\n",
|
| 241 |
-
" panting 1.00 0.70 0.82 10\n",
|
| 242 |
-
" whimper 0.54 1.00 0.70 7\n",
|
| 243 |
-
"\n",
|
| 244 |
-
" accuracy 0.78 40\n",
|
| 245 |
-
" macro avg 0.83 0.79 0.78 40\n",
|
| 246 |
-
"weighted avg 0.84 0.78 0.78 40\n",
|
| 247 |
-
"\n"
|
| 248 |
-
]
|
| 249 |
-
}
|
| 250 |
-
],
|
| 251 |
-
"source": [
|
| 252 |
-
"from sklearn.metrics import classification_report\n",
|
| 253 |
-
"valid_performance = classification_report(gts, preds)\n",
|
| 254 |
-
"print(valid_performance)"
|
| 255 |
-
]
|
| 256 |
-
}
|
| 257 |
-
],
|
| 258 |
-
"metadata": {
|
| 259 |
-
"kernelspec": {
|
| 260 |
-
"display_name": "g3p8",
|
| 261 |
-
"language": "python",
|
| 262 |
-
"name": "g3p8"
|
| 263 |
-
},
|
| 264 |
-
"language_info": {
|
| 265 |
-
"codemirror_mode": {
|
| 266 |
-
"name": "ipython",
|
| 267 |
-
"version": 3
|
| 268 |
-
},
|
| 269 |
-
"file_extension": ".py",
|
| 270 |
-
"mimetype": "text/x-python",
|
| 271 |
-
"name": "python",
|
| 272 |
-
"nbconvert_exporter": "python",
|
| 273 |
-
"pygments_lexer": "ipython3",
|
| 274 |
-
"version": "3.7.9"
|
| 275 |
-
}
|
| 276 |
-
},
|
| 277 |
-
"nbformat": 4,
|
| 278 |
-
"nbformat_minor": 5
|
| 279 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/eval_and_inference_lite_v1-checkpoint.ipynb
DELETED
|
@@ -1,189 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "markdown",
|
| 5 |
-
"id": "544a588c-68ff-440f-be5c-389f1f02a0b7",
|
| 6 |
-
"metadata": {},
|
| 7 |
-
"source": [
|
| 8 |
-
"# example"
|
| 9 |
-
]
|
| 10 |
-
},
|
| 11 |
-
{
|
| 12 |
-
"cell_type": "code",
|
| 13 |
-
"execution_count": 1,
|
| 14 |
-
"id": "7ef8c97c-cefd-4905-8d63-af303c412d1a",
|
| 15 |
-
"metadata": {},
|
| 16 |
-
"outputs": [],
|
| 17 |
-
"source": [
|
| 18 |
-
"MODEL_NAME = \"gaepago-20-lite\"\n",
|
| 19 |
-
"DATASET_NAME = \"Gae8J/modeling_v1\""
|
| 20 |
-
]
|
| 21 |
-
},
|
| 22 |
-
{
|
| 23 |
-
"cell_type": "markdown",
|
| 24 |
-
"id": "044499ce-7821-4b59-9f4b-5971b6a24cce",
|
| 25 |
-
"metadata": {},
|
| 26 |
-
"source": [
|
| 27 |
-
"## load dataset (test data)"
|
| 28 |
-
]
|
| 29 |
-
},
|
| 30 |
-
{
|
| 31 |
-
"cell_type": "code",
|
| 32 |
-
"execution_count": 2,
|
| 33 |
-
"id": "e827e3bb-820d-46b3-b2e8-fdb97787bde1",
|
| 34 |
-
"metadata": {},
|
| 35 |
-
"outputs": [
|
| 36 |
-
{
|
| 37 |
-
"name": "stderr",
|
| 38 |
-
"output_type": "stream",
|
| 39 |
-
"text": [
|
| 40 |
-
"WARNING:datasets.builder:Found cached dataset parquet (/home/jovyan/.cache/huggingface/datasets/Gae8J___parquet/Gae8J--modeling_v1-b480c78c61a26816/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
|
| 41 |
-
]
|
| 42 |
-
},
|
| 43 |
-
{
|
| 44 |
-
"data": {
|
| 45 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 46 |
-
"model_id": "4438f0b33464423b92fecc698c1935e5",
|
| 47 |
-
"version_major": 2,
|
| 48 |
-
"version_minor": 0
|
| 49 |
-
},
|
| 50 |
-
"text/plain": [
|
| 51 |
-
" 0%| | 0/3 [00:00<?, ?it/s]"
|
| 52 |
-
]
|
| 53 |
-
},
|
| 54 |
-
"metadata": {},
|
| 55 |
-
"output_type": "display_data"
|
| 56 |
-
}
|
| 57 |
-
],
|
| 58 |
-
"source": [
|
| 59 |
-
"from datasets import load_dataset, Audio\n",
|
| 60 |
-
"from transformers import AutoFeatureExtractor\n",
|
| 61 |
-
"dataset = load_dataset(DATASET_NAME)\n",
|
| 62 |
-
"dataset = dataset.cast_column(\"audio\", Audio(sampling_rate=16000))\n",
|
| 63 |
-
"test_data = dataset['test']\n",
|
| 64 |
-
"sampling_rate = test_data.features[\"audio\"].sampling_rate\n",
|
| 65 |
-
"feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)"
|
| 66 |
-
]
|
| 67 |
-
},
|
| 68 |
-
{
|
| 69 |
-
"cell_type": "code",
|
| 70 |
-
"execution_count": 7,
|
| 71 |
-
"id": "779c547a-7e27-4481-8a66-fd9900e41964",
|
| 72 |
-
"metadata": {},
|
| 73 |
-
"outputs": [],
|
| 74 |
-
"source": [
|
| 75 |
-
"from transformers import AutoConfig\n",
|
| 76 |
-
"config = AutoConfig.from_pretrained(MODEL_NAME)"
|
| 77 |
-
]
|
| 78 |
-
},
|
| 79 |
-
{
|
| 80 |
-
"cell_type": "code",
|
| 81 |
-
"execution_count": 3,
|
| 82 |
-
"id": "03659af7-3d90-4431-a4ea-a8d99e93602f",
|
| 83 |
-
"metadata": {},
|
| 84 |
-
"outputs": [],
|
| 85 |
-
"source": [
|
| 86 |
-
"import torch"
|
| 87 |
-
]
|
| 88 |
-
},
|
| 89 |
-
{
|
| 90 |
-
"cell_type": "code",
|
| 91 |
-
"execution_count": 4,
|
| 92 |
-
"id": "0f58cfcf-ba2d-45e4-b4e9-87df88e9dbad",
|
| 93 |
-
"metadata": {},
|
| 94 |
-
"outputs": [],
|
| 95 |
-
"source": [
|
| 96 |
-
"loaded_quantized_model = torch.jit.load(\"gaepago-20-lite/model_quant_int8.pt\")"
|
| 97 |
-
]
|
| 98 |
-
},
|
| 99 |
-
{
|
| 100 |
-
"cell_type": "markdown",
|
| 101 |
-
"id": "52212656-a3e9-4bd2-ac2d-427acb5795c6",
|
| 102 |
-
"metadata": {},
|
| 103 |
-
"source": [
|
| 104 |
-
"## ๋ชจ๋ธ๊ฒฐ๊ณผ"
|
| 105 |
-
]
|
| 106 |
-
},
|
| 107 |
-
{
|
| 108 |
-
"cell_type": "code",
|
| 109 |
-
"execution_count": 9,
|
| 110 |
-
"id": "3d4f5365-d6f1-4163-9c47-ce8c89e13884",
|
| 111 |
-
"metadata": {},
|
| 112 |
-
"outputs": [],
|
| 113 |
-
"source": [
|
| 114 |
-
"preds = []\n",
|
| 115 |
-
"gts = []\n",
|
| 116 |
-
"# quant_logits_list = []\n",
|
| 117 |
-
"for i in range(len(test_data)):\n",
|
| 118 |
-
" inputs = feature_extractor(test_data[i][\"audio\"][\"array\"], sampling_rate=sampling_rate, return_tensors=\"pt\")\n",
|
| 119 |
-
" with torch.no_grad():\n",
|
| 120 |
-
" logits = loaded_quantized_model(**inputs)['logits']\n",
|
| 121 |
-
"# quant_logits_list.append(logits)\n",
|
| 122 |
-
" predicted_class_ids = torch.argmax(logits).item()\n",
|
| 123 |
-
" predicted_label = config.id2label[predicted_class_ids]\n",
|
| 124 |
-
" preds.append(predicted_label)\n",
|
| 125 |
-
" gts.append(config.id2label[test_data[i]['label']])"
|
| 126 |
-
]
|
| 127 |
-
},
|
| 128 |
-
{
|
| 129 |
-
"cell_type": "code",
|
| 130 |
-
"execution_count": 10,
|
| 131 |
-
"id": "93b3c424-bab6-4774-915e-9e9f534f762d",
|
| 132 |
-
"metadata": {},
|
| 133 |
-
"outputs": [
|
| 134 |
-
{
|
| 135 |
-
"name": "stdout",
|
| 136 |
-
"output_type": "stream",
|
| 137 |
-
"text": [
|
| 138 |
-
" precision recall f1-score support\n",
|
| 139 |
-
"\n",
|
| 140 |
-
" bark 0.5556 0.6250 0.5882 8\n",
|
| 141 |
-
" growling 1.0000 0.8333 0.9091 6\n",
|
| 142 |
-
" howl 0.7500 0.8571 0.8000 7\n",
|
| 143 |
-
" panting 1.0000 0.8000 0.8889 10\n",
|
| 144 |
-
" whimper 0.3750 0.4286 0.4000 7\n",
|
| 145 |
-
"\n",
|
| 146 |
-
" accuracy 0.7105 38\n",
|
| 147 |
-
" macro avg 0.7361 0.7088 0.7172 38\n",
|
| 148 |
-
"weighted avg 0.7452 0.7105 0.7224 38\n",
|
| 149 |
-
"\n"
|
| 150 |
-
]
|
| 151 |
-
}
|
| 152 |
-
],
|
| 153 |
-
"source": [
|
| 154 |
-
"from sklearn.metrics import classification_report\n",
|
| 155 |
-
"test_performance = classification_report(gts, preds,digits=4)\n",
|
| 156 |
-
"print(test_performance)"
|
| 157 |
-
]
|
| 158 |
-
},
|
| 159 |
-
{
|
| 160 |
-
"cell_type": "code",
|
| 161 |
-
"execution_count": null,
|
| 162 |
-
"id": "99a3ea38-54c8-4aed-9bbf-12f98bf09dc5",
|
| 163 |
-
"metadata": {},
|
| 164 |
-
"outputs": [],
|
| 165 |
-
"source": []
|
| 166 |
-
}
|
| 167 |
-
],
|
| 168 |
-
"metadata": {
|
| 169 |
-
"kernelspec": {
|
| 170 |
-
"display_name": "g3p8",
|
| 171 |
-
"language": "python",
|
| 172 |
-
"name": "g3p8"
|
| 173 |
-
},
|
| 174 |
-
"language_info": {
|
| 175 |
-
"codemirror_mode": {
|
| 176 |
-
"name": "ipython",
|
| 177 |
-
"version": 3
|
| 178 |
-
},
|
| 179 |
-
"file_extension": ".py",
|
| 180 |
-
"mimetype": "text/x-python",
|
| 181 |
-
"name": "python",
|
| 182 |
-
"nbconvert_exporter": "python",
|
| 183 |
-
"pygments_lexer": "ipython3",
|
| 184 |
-
"version": "3.7.9"
|
| 185 |
-
}
|
| 186 |
-
},
|
| 187 |
-
"nbformat": 4,
|
| 188 |
-
"nbformat_minor": 5
|
| 189 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/text_label-checkpoint.json
DELETED
|
@@ -1,528 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"bark": [
|
| 3 |
-
[
|
| 4 |
-
"๋๋ฌด ์ ๋์ ์ด์ฉ์ง?",
|
| 5 |
-
"๊ธ์ "
|
| 6 |
-
],
|
| 7 |
-
[
|
| 8 |
-
"์ง์ฌ, ๋์์ค!",
|
| 9 |
-
"๊ธ์ "
|
| 10 |
-
],
|
| 11 |
-
[
|
| 12 |
-
"์ง๊ธ ๋๋ฌด ์ ๋!",
|
| 13 |
-
"๊ธ์ "
|
| 14 |
-
],
|
| 15 |
-
[
|
| 16 |
-
"๋๊ฐ ์๋ ๋ด!",
|
| 17 |
-
"๊ธ์ "
|
| 18 |
-
],
|
| 19 |
-
[
|
| 20 |
-
"๋์์ค!! ๋์๋ฌ๋๋ง์ด์ผ!!",
|
| 21 |
-
"๊ธ์ "
|
| 22 |
-
],
|
| 23 |
-
[
|
| 24 |
-
"์๋
๐ถ",
|
| 25 |
-
"๊ธ์ "
|
| 26 |
-
],
|
| 27 |
-
[
|
| 28 |
-
"๋ ๋๋ฅผ ์ข์ํ๋ ๊ฑธ, ๊ทธ๋ฐ๋ฐ ๋๋ ๋๋ฅผ ์ข์ํด?",
|
| 29 |
-
"๊ธ์ "
|
| 30 |
-
],
|
| 31 |
-
[
|
| 32 |
-
"์ฃผ๋ชฉํด์ค! ๋์!",
|
| 33 |
-
"๊ธ์ "
|
| 34 |
-
],
|
| 35 |
-
[
|
| 36 |
-
"๋์ด ์๊ฐ์ด์ผ, ๊ฐ์ด ๋์!",
|
| 37 |
-
"๊ธ์ "
|
| 38 |
-
],
|
| 39 |
-
[
|
| 40 |
-
"๋ค๊ฐ์ค์ง๋ง!",
|
| 41 |
-
"๋ถ์ "
|
| 42 |
-
],
|
| 43 |
-
[
|
| 44 |
-
"๋ญ๊ฐ ์ด์ํ ์๋ฆฌ ๋ค๋ ค!",
|
| 45 |
-
"๋ถ์ "
|
| 46 |
-
],
|
| 47 |
-
[
|
| 48 |
-
"๊ฒฝ๊ณํด, ๊ฒฝ๊ณํด!",
|
| 49 |
-
"๋ถ์ "
|
| 50 |
-
],
|
| 51 |
-
[
|
| 52 |
-
"์๋์ผ, ์๋์ผ!",
|
| 53 |
-
"๋ถ์ "
|
| 54 |
-
],
|
| 55 |
-
[
|
| 56 |
-
"๊ฑด๋ค์ง๋ง!!!!",
|
| 57 |
-
"๋ถ์ "
|
| 58 |
-
],
|
| 59 |
-
[
|
| 60 |
-
"๋ญ๊ฐ ๋ถ์ํด, ๋์์ค!",
|
| 61 |
-
"๋ถ์ "
|
| 62 |
-
],
|
| 63 |
-
[
|
| 64 |
-
"์ฃผ์ธ~ ๋ญํด~?",
|
| 65 |
-
"์ค๋ฆฝ"
|
| 66 |
-
],
|
| 67 |
-
[
|
| 68 |
-
"๋ฐ์ ๋ญ๊ฐ ์๋ ๊ฑฐ ๊ฐ์!",
|
| 69 |
-
"์ค๋ฆฝ"
|
| 70 |
-
],
|
| 71 |
-
[
|
| 72 |
-
"์ด๋ฆฌ ์๋ด!",
|
| 73 |
-
"์ค๋ฆฝ"
|
| 74 |
-
],
|
| 75 |
-
[
|
| 76 |
-
"๋ ๋ณด๊ณ ์์ด?",
|
| 77 |
-
"์ค๋ฆฝ"
|
| 78 |
-
],
|
| 79 |
-
[
|
| 80 |
-
"๋ฐ์ ๋ญ ์์ด?",
|
| 81 |
-
"์ค๋ฆฝ"
|
| 82 |
-
],
|
| 83 |
-
[
|
| 84 |
-
"์ด๊ฑฐ ๋ด๊บผ์ผ!",
|
| 85 |
-
"์ค๋ฆฝ"
|
| 86 |
-
],
|
| 87 |
-
[
|
| 88 |
-
"๋ฌผ ๋ง์ค๋, ๋ง์ค ๊ฒ ์ข ์ค.",
|
| 89 |
-
"์ค๋ฆฝ"
|
| 90 |
-
],
|
| 91 |
-
[
|
| 92 |
-
"๋ชฉ์ด ๋ง๋ผ, ๋ฌผ ์ข ์ค๋?",
|
| 93 |
-
"์ค๋ฆฝ"
|
| 94 |
-
]
|
| 95 |
-
],
|
| 96 |
-
"growling": [
|
| 97 |
-
[
|
| 98 |
-
"๋ ์ข ๋ด๋ฒ๋ ค ๋ฌ!",
|
| 99 |
-
"๋ถ์ "
|
| 100 |
-
],
|
| 101 |
-
[
|
| 102 |
-
"๋ ์ด์ ๋ค๊ฐ์ค์ง๋ง!",
|
| 103 |
-
"๋ถ์ "
|
| 104 |
-
],
|
| 105 |
-
[
|
| 106 |
-
"๋๋ฌด ๊น๋ค๋ก์!",
|
| 107 |
-
"๋ถ์ "
|
| 108 |
-
],
|
| 109 |
-
[
|
| 110 |
-
"๋ด๊ฐ ๊ฒฝ๊ณํ๊ณ ์์ด!",
|
| 111 |
-
"๋ถ์ "
|
| 112 |
-
],
|
| 113 |
-
[
|
| 114 |
-
"๋นจ๋ฆฌ ์ด๋ฆฌ ์!",
|
| 115 |
-
"๋ถ์ "
|
| 116 |
-
],
|
| 117 |
-
[
|
| 118 |
-
"๋ ๋๋ฌด ํ๋!",
|
| 119 |
-
"๋ถ์ "
|
| 120 |
-
],
|
| 121 |
-
[
|
| 122 |
-
"๋ ์ธ์ธ ์ค๋น๋์ด!",
|
| 123 |
-
"๋ถ์ "
|
| 124 |
-
],
|
| 125 |
-
[
|
| 126 |
-
"๊ทธ๋ง ์ข ํด!",
|
| 127 |
-
"๋ถ์ "
|
| 128 |
-
],
|
| 129 |
-
[
|
| 130 |
-
"๋ด๊ฒ ์ฅ๋์น์ง๋ง!",
|
| 131 |
-
"๋ถ์ "
|
| 132 |
-
],
|
| 133 |
-
[
|
| 134 |
-
"๋ ์ง๊ธ ๋๋ฌด ์ง์ฆ๋!",
|
| 135 |
-
"๋ถ์ "
|
| 136 |
-
],
|
| 137 |
-
[
|
| 138 |
-
"๋ ์ง๊ธ ์ ์ข์!",
|
| 139 |
-
"๋ถ์ "
|
| 140 |
-
],
|
| 141 |
-
[
|
| 142 |
-
"๋ค๊ฐ์ค์ง๋ง!",
|
| 143 |
-
"๋ถ์ "
|
| 144 |
-
],
|
| 145 |
-
[
|
| 146 |
-
"๋์๊ฒ ํ๋ ๊ฑฐ์ผ!",
|
| 147 |
-
"๋ถ์ "
|
| 148 |
-
],
|
| 149 |
-
[
|
| 150 |
-
"์ข ๋ฉ๋ฆฌ ๊ฐ!",
|
| 151 |
-
"๋ถ์ "
|
| 152 |
-
],
|
| 153 |
-
[
|
| 154 |
-
"๋ ์ธ์ฐ๋ ค๊ณ ์ค๋น๋์ด!",
|
| 155 |
-
"๋ถ์ "
|
| 156 |
-
],
|
| 157 |
-
[
|
| 158 |
-
"ํ๋ฒ ๋ ๊ฑด๋๋ฆฌ๋ฉด ๋ฌผ์ด๋ฒ๋ฆด๊ฑฐ์ผ!!!",
|
| 159 |
-
"๋ถ์ "
|
| 160 |
-
],
|
| 161 |
-
[
|
| 162 |
-
"๋ํํ
์ด๋ ๊ฒ ์ํ์ ์ผ๋ก ๋ค๊ฐ์ค์ง๋ง!",
|
| 163 |
-
"๋ถ์ "
|
| 164 |
-
],
|
| 165 |
-
[
|
| 166 |
-
"๋์ ์์ญ์ ์นจ๋ฒํ๋ฉด ์๋ผ! ์ดํดํด์ค!",
|
| 167 |
-
"๋ถ์ "
|
| 168 |
-
],
|
| 169 |
-
[
|
| 170 |
-
"๊ทธ๋ง ์ข ๊ท์ฐฎ๊ฒ ํด! ๋ด๊ฐ ๋ถ๋ช
ํ ๊ฒฝ๊ณ ํ์์!",
|
| 171 |
-
"๋ถ์ "
|
| 172 |
-
],
|
| 173 |
-
[
|
| 174 |
-
"๋ถํธํด, ๋ฌผ๋ฌ์์ค.",
|
| 175 |
-
"๋ถ์ "
|
| 176 |
-
],
|
| 177 |
-
[
|
| 178 |
-
"๊ฒฝ๊ณ ํ๋ ๊ฑฐ์ผ, ๊ฐ๊น์ด ์ค์ง ๋ง.",
|
| 179 |
-
"๋ถ์ "
|
| 180 |
-
],
|
| 181 |
-
[
|
| 182 |
-
"์ข ๋๋ฌด ๊ฐ๊น์, ๊ฑฐ๋ฆฌ ์ข ๋ฌ.",
|
| 183 |
-
"๋ถ์ "
|
| 184 |
-
],
|
| 185 |
-
[
|
| 186 |
-
"๋๋ฅผ ๋ฐฉํดํ์ง ๋ง, ์ ๊ฒฝ ์จ์ค.",
|
| 187 |
-
"๋ถ์ "
|
| 188 |
-
],
|
| 189 |
-
[
|
| 190 |
-
"๋ด๊ฐ ๋ถํธํด, ๊ฑฐ๋ฆฌ ์ข ๋๊ณ ์์ด.",
|
| 191 |
-
"๋ถ์ "
|
| 192 |
-
],
|
| 193 |
-
[
|
| 194 |
-
"๊ฐ๊น์ด ์ค์ง ๋ง.",
|
| 195 |
-
"๋ถ์ "
|
| 196 |
-
],
|
| 197 |
-
[
|
| 198 |
-
"๋๋ฅผ ๋ฐฉํดํ์ง ๋ง, ์กด์คํด์ค. Respect Me!!",
|
| 199 |
-
"๋ถ์ "
|
| 200 |
-
]
|
| 201 |
-
],
|
| 202 |
-
"howl": [
|
| 203 |
-
[
|
| 204 |
-
"๋ ์ฌ๊ธฐ์์ด, ๋ด์ค!",
|
| 205 |
-
"์ค๋ฆฝ"
|
| 206 |
-
],
|
| 207 |
-
[
|
| 208 |
-
"๋ ์ด๋ ๊ฐ์ด?!",
|
| 209 |
-
"์ค๋ฆฝ"
|
| 210 |
-
],
|
| 211 |
-
[
|
| 212 |
-
"๋ ๋๋ฌด ์ธ๋ก์!",
|
| 213 |
-
"์ค๋ฆฝ"
|
| 214 |
-
],
|
| 215 |
-
[
|
| 216 |
-
"์ด๋ฆฌ ์๋ด, ๋ ์๋ ๊ณณ์ผ๋ก!",
|
| 217 |
-
"์ค๋ฆฝ"
|
| 218 |
-
],
|
| 219 |
-
[
|
| 220 |
-
"๋ ์์ผ๋ฉด ๋๋ฌด ์ฌ์ฌํด!",
|
| 221 |
-
"์ค๋ฆฝ"
|
| 222 |
-
],
|
| 223 |
-
[
|
| 224 |
-
"๋๋ ๊ฐ์ด ๊ฐ๊ณ ์ถ์ด!",
|
| 225 |
-
"์ค๋ฆฝ"
|
| 226 |
-
],
|
| 227 |
-
[
|
| 228 |
-
"๋ ์ฌ์ฌํด",
|
| 229 |
-
"์ค๋ฆฝ"
|
| 230 |
-
],
|
| 231 |
-
[
|
| 232 |
-
"์ด๋์ผ? ๋ ์ฐพ์๋ด!",
|
| 233 |
-
"์ค๋ฆฝ"
|
| 234 |
-
],
|
| 235 |
-
[
|
| 236 |
-
"์ธ์ ์ค๋ ค๊ณ ๊ทธ๋?",
|
| 237 |
-
"์ค๋ฆฝ"
|
| 238 |
-
],
|
| 239 |
-
[
|
| 240 |
-
"๋๋ ์ฌ๊ธฐ ์๋๋ฐ!",
|
| 241 |
-
"์ค๋ฆฝ"
|
| 242 |
-
],
|
| 243 |
-
[
|
| 244 |
-
"๋นจ๋ฆฌ ๋์์์ค!",
|
| 245 |
-
"์ค๋ฆฝ"
|
| 246 |
-
],
|
| 247 |
-
[
|
| 248 |
-
"๋ ํผ์ ๋จ๊ฒจ๋์ง ๋ง!",
|
| 249 |
-
"์ค๋ฆฝ"
|
| 250 |
-
],
|
| 251 |
-
[
|
| 252 |
-
"๋ ์ฌ๊ธฐ์์ด!! ๋์ข ๋ด์ค!!!",
|
| 253 |
-
"์ค๋ฆฝ"
|
| 254 |
-
],
|
| 255 |
-
[
|
| 256 |
-
"๋ ์ ๋ณด๊ณ ์์ด? ๋ ๊ด์ฐฎ์?",
|
| 257 |
-
"์ค๋ฆฝ"
|
| 258 |
-
],
|
| 259 |
-
[
|
| 260 |
-
"์ฃผ์ธ, ๋ ์ข ์์์ค ์ ์์๊น?",
|
| 261 |
-
"์ค๋ฆฝ"
|
| 262 |
-
],
|
| 263 |
-
[
|
| 264 |
-
"์ธ๋ก์, ๋ณด๊ณ ์ถ์ด.",
|
| 265 |
-
"์ค๋ฆฝ"
|
| 266 |
-
],
|
| 267 |
-
[
|
| 268 |
-
"๋ค๋ฅธ ๊ฐ์์ง์ 'ํฉ์ฐฝ'ํ๊ณ ์ถ์ด.",
|
| 269 |
-
"์ค๋ฆฝ"
|
| 270 |
-
],
|
| 271 |
-
[
|
| 272 |
-
"๋๋ฅผ ๋ณด๊ณ ์ถ์ด, ์ธ์ ์?",
|
| 273 |
-
"์ค๋ฆฝ"
|
| 274 |
-
],
|
| 275 |
-
[
|
| 276 |
-
"๋ฌด์ธ๊ฐ ์๋ ค๊ณ ํ๋ ์ค์ด์ผ.",
|
| 277 |
-
"์ค๋ฆฝ"
|
| 278 |
-
],
|
| 279 |
-
[
|
| 280 |
-
"๋ค๋ฅธ ๊ฐ์์ง๋ค์ด๋ ๋
ธ๋ํ๊ณ ์ถ์ด.",
|
| 281 |
-
"๊ธ์ "
|
| 282 |
-
]
|
| 283 |
-
],
|
| 284 |
-
"panting": [
|
| 285 |
-
[
|
| 286 |
-
"๋์~ ์์ด์ปจ ์ผ์ค.",
|
| 287 |
-
"๋ถ์ "
|
| 288 |
-
],
|
| 289 |
-
[
|
| 290 |
-
"์ด๋ ํ ํด์ ์ค์ด์ผ.",
|
| 291 |
-
"์ค๋ฆฝ"
|
| 292 |
-
],
|
| 293 |
-
[
|
| 294 |
-
"์จ์ด ์ฐจ, ์ข ๋์์ค.",
|
| 295 |
-
"๋ถ์ "
|
| 296 |
-
],
|
| 297 |
-
[
|
| 298 |
-
"ํด์์ด ํ์ํด, ์ข ์ฌ์.",
|
| 299 |
-
"๋ถ์ "
|
| 300 |
-
],
|
| 301 |
-
[
|
| 302 |
-
"๋๋ฌด ๋์, ๋ฌผ ์ข ์ค๋?",
|
| 303 |
-
"๋ถ์ "
|
| 304 |
-
],
|
| 305 |
-
[
|
| 306 |
-
"๋๋ฌด ๋์, ๋ฐ๋ ์ข ์ฌ์.",
|
| 307 |
-
"๋ถ์ "
|
| 308 |
-
],
|
| 309 |
-
[
|
| 310 |
-
"ํ๋ค๊ฒ ์ด๋ํ์ด, ํด์ ์ข!",
|
| 311 |
-
"๋ถ์ "
|
| 312 |
-
],
|
| 313 |
-
[
|
| 314 |
-
"์จ์ด ์ฐจ, ์ฌ๋ ์๊ฐ์ด ํ์ํด.",
|
| 315 |
-
"๋ถ์ "
|
| 316 |
-
],
|
| 317 |
-
[
|
| 318 |
-
"ํด์์ด ํ์ํด, ์กฐ์ฉํ ์ข...",
|
| 319 |
-
"๋ถ์ "
|
| 320 |
-
],
|
| 321 |
-
[
|
| 322 |
-
"๋ฌผ ์ข ๋ง์๊ณ ์ถ์ด, ์ค๋?",
|
| 323 |
-
"์ค๋ฆฝ"
|
| 324 |
-
],
|
| 325 |
-
[
|
| 326 |
-
"๋ง์ด ๋ฐ์ด์ ํ๋ค์ด, ํด์์ด ํ์ํด.",
|
| 327 |
-
"๋ถ์ "
|
| 328 |
-
],
|
| 329 |
-
[
|
| 330 |
-
"ํด์์ด ํ์ํด, ์ข ๋ ์ฌ์.",
|
| 331 |
-
"์ค๋ฆฝ"
|
| 332 |
-
],
|
| 333 |
-
[
|
| 334 |
-
"๋๋ฌด ๋์์ ๋ฌผ ์ข ๋ง์๊ณ ์ถ์ด.",
|
| 335 |
-
"์ค๋ฆฝ"
|
| 336 |
-
],
|
| 337 |
-
[
|
| 338 |
-
"์ข ๋์ด ๏ฟฝ๏ฟฝ ๊ฐ์, ๋ฐ๋ ์ข ์ฌ๊ณ ์ถ์ด.",
|
| 339 |
-
"์ค๋ฆฝ"
|
| 340 |
-
],
|
| 341 |
-
[
|
| 342 |
-
"์ง๊ธ ์ข ์ด ์๊ฐ์ด ํ์ํด, ์ ์๋ง ๊ธฐ๋ค๋ ค.",
|
| 343 |
-
"์ค๋ฆฝ"
|
| 344 |
-
],
|
| 345 |
-
[
|
| 346 |
-
"์ง๊ธ ์ง์ ํ ์๊ฐ์ด ํ์ํด!!!",
|
| 347 |
-
"์ค๋ฆฝ"
|
| 348 |
-
],
|
| 349 |
-
[
|
| 350 |
-
"๋ ์ง๊ธ ๋๋ฌด ์ ๋",
|
| 351 |
-
"๊ธ์ "
|
| 352 |
-
],
|
| 353 |
-
[
|
| 354 |
-
"๋๋ ๋๋ฉด ๋ ์ฌ๋ฐ์ ๊ฒ ๊ฐ์",
|
| 355 |
-
"๊ธ์ "
|
| 356 |
-
],
|
| 357 |
-
[
|
| 358 |
-
"๋๋ ๋์ง ์์๋?",
|
| 359 |
-
"๊ธ์ "
|
| 360 |
-
],
|
| 361 |
-
[
|
| 362 |
-
"๋ฐ์ ๋๊ฐ๋ฉด ์ฌ๋ฏธ๋ ์ผ์ด ์์ ๊ฒ ๊ฐ์!",
|
| 363 |
-
"๊ธ์ "
|
| 364 |
-
],
|
| 365 |
-
[
|
| 366 |
-
"์ค๋์ ๋ฌด์จ ์ผ์ด ์์๊น? ์ข์ ์ผ์ด ์๊ธธ ๊ฒ ๊ฐ์!",
|
| 367 |
-
"๊ธ์ "
|
| 368 |
-
],
|
| 369 |
-
[
|
| 370 |
-
"์ธ์ ๋ชจ๋ ๊ฒ๋ค์ด ๋ฐ๊ฐ์~",
|
| 371 |
-
"๊ธ์ "
|
| 372 |
-
],
|
| 373 |
-
[
|
| 374 |
-
"๋๋ ์นํด์ง๊ณ ์ถ์ด~",
|
| 375 |
-
"๊ธ์ "
|
| 376 |
-
],
|
| 377 |
-
[
|
| 378 |
-
"์ค๋ ๊ธฐ๋ถ ์์ฃผ ๋์ด์ค~",
|
| 379 |
-
"๊ธ์ "
|
| 380 |
-
],
|
| 381 |
-
[
|
| 382 |
-
"์ธ์์์ ์ ์ผ ์ข์!!",
|
| 383 |
-
"๊ธ์ "
|
| 384 |
-
],
|
| 385 |
-
[
|
| 386 |
-
"๋ ์ง๊ธ ๊ธฐ๋ถ์ด๊ฐ ์ข์~",
|
| 387 |
-
"๊ธ์ "
|
| 388 |
-
],
|
| 389 |
-
[
|
| 390 |
-
"๋๋ ๋๊ณ ์ถ์ด~",
|
| 391 |
-
"๊ธ์ "
|
| 392 |
-
],
|
| 393 |
-
[
|
| 394 |
-
"์ค๋ ๋๊ฒ ํ๋ณตํ ํ๋ฃจ๋ค~",
|
| 395 |
-
"๊ธ์ "
|
| 396 |
-
],
|
| 397 |
-
[
|
| 398 |
-
"์ค๋ ๋ด ์์ผ์ธ๊ฐ? ๋๋ฌด ํ๋ณตํด><",
|
| 399 |
-
"๊ธ์ "
|
| 400 |
-
],
|
| 401 |
-
[
|
| 402 |
-
"๋ง๋์ ๋ฐ๊ฐ์",
|
| 403 |
-
"๊ธ์ "
|
| 404 |
-
],
|
| 405 |
-
[
|
| 406 |
-
"๋๋ ์ด๋ฆ์ด ๋ญ๋?",
|
| 407 |
-
"๊ธ์ "
|
| 408 |
-
],
|
| 409 |
-
[
|
| 410 |
-
"๋ ๋๊ฐ ์ข์!!",
|
| 411 |
-
"๊ธ์ "
|
| 412 |
-
],
|
| 413 |
-
[
|
| 414 |
-
"๋ ๋งค์ฐ ์ฌ๋ฐ์ด",
|
| 415 |
-
"๊ธ์ "
|
| 416 |
-
],
|
| 417 |
-
[
|
| 418 |
-
"๋๋ ๊ฐ์ด ๋๋ฌ ๋๊ฐ์",
|
| 419 |
-
"๊ธ์ "
|
| 420 |
-
]
|
| 421 |
-
],
|
| 422 |
-
"whimper": [
|
| 423 |
-
[
|
| 424 |
-
"๋ ๋๋ฌด ๋๋ ค์",
|
| 425 |
-
"๋ถ์ "
|
| 426 |
-
],
|
| 427 |
-
[
|
| 428 |
-
"๋ ์ง๊ธ ๋๋ฌด ์ธ๋ก์",
|
| 429 |
-
"๋ถ์ "
|
| 430 |
-
],
|
| 431 |
-
[
|
| 432 |
-
"๋ ๋๋ฌด ์ฌํผ",
|
| 433 |
-
"๋ถ์ "
|
| 434 |
-
],
|
| 435 |
-
[
|
| 436 |
-
"๋ ์ข ์์์ค",
|
| 437 |
-
"๋ถ์ "
|
| 438 |
-
],
|
| 439 |
-
[
|
| 440 |
-
"๋ ์ง๊ธ ๋๋ฌด ๋ถํธํด",
|
| 441 |
-
"๋ถ์ "
|
| 442 |
-
],
|
| 443 |
-
[
|
| 444 |
-
"๋ ๋๋ฌด ํผ๊ณคํด",
|
| 445 |
-
"๋ถ์ "
|
| 446 |
-
],
|
| 447 |
-
[
|
| 448 |
-
"์กฐ๊ธ๋ง ๋ ์์์ค",
|
| 449 |
-
"๋ถ์ "
|
| 450 |
-
],
|
| 451 |
-
[
|
| 452 |
-
"๋ ์ข ์๋กํด์ค",
|
| 453 |
-
"๋ถ์ "
|
| 454 |
-
],
|
| 455 |
-
[
|
| 456 |
-
"๋ ๊ธฐ๋ค๋ฆฌ๋ ์ค",
|
| 457 |
-
"๋ถ์ "
|
| 458 |
-
],
|
| 459 |
-
[
|
| 460 |
-
"์ธ๋ก์์ ๋๋ฌผ์ด ๋",
|
| 461 |
-
"๋ถ์ "
|
| 462 |
-
],
|
| 463 |
-
[
|
| 464 |
-
"๋ ์์ฒ๋ฐ์์ด, ๋๋ฌด ๋๋ ค์...ใ
ใ
กใ
",
|
| 465 |
-
"๋ถ์ "
|
| 466 |
-
],
|
| 467 |
-
[
|
| 468 |
-
"๋ ๋๋์ชใ
ใ
กใ
ํ๊ตฌํ๊ตฌ..",
|
| 469 |
-
"๋ถ์ "
|
| 470 |
-
],
|
| 471 |
-
[
|
| 472 |
-
"๋ฌด์
์... ์์์ฃ ~~~",
|
| 473 |
-
"๋ถ์ "
|
| 474 |
-
],
|
| 475 |
-
[
|
| 476 |
-
"๋๋ฌด ์ฌํผ์ ๋ง์ด ์ํ... ์์์ค...",
|
| 477 |
-
"๋ถ์ "
|
| 478 |
-
],
|
| 479 |
-
[
|
| 480 |
-
"๋ ๊ธฐ๋ถ์ด ๋๋ฌด ์ ์ข์... ์ด๋ป๊ฒ ํด์ค๋?",
|
| 481 |
-
"๋ถ์ "
|
| 482 |
-
],
|
| 483 |
-
[
|
| 484 |
-
"ํ...๋ฏธ์ํด...",
|
| 485 |
-
"๋ถ์ "
|
| 486 |
-
],
|
| 487 |
-
[
|
| 488 |
-
"๋ถ์ํด, ๊ณ์ ์์ด์ค.",
|
| 489 |
-
"๋ถ์ "
|
| 490 |
-
],
|
| 491 |
-
[
|
| 492 |
-
"๋ฐ์ผ๋ก ๋๊ฐ๊ณ ์ถ์ด.",
|
| 493 |
-
"์ค๋ฆฝ"
|
| 494 |
-
],
|
| 495 |
-
[
|
| 496 |
-
"๋ฏธ์ํด, ์ค์ํ์ด.",
|
| 497 |
-
"๋ถ์ "
|
| 498 |
-
],
|
| 499 |
-
[
|
| 500 |
-
"๋๋ฌด ์ฌํผ, ์๋ก ์ข ํด์ค.",
|
| 501 |
-
"๋ถ์ "
|
| 502 |
-
],
|
| 503 |
-
[
|
| 504 |
-
"์คํธ๋ ์ค ๋ฐ์์ด, ๋์์ค.",
|
| 505 |
-
"๋ถ์ "
|
| 506 |
-
],
|
| 507 |
-
[
|
| 508 |
-
"๋ด๊ฐ ๋ถ์ํด, ๋ถ์ด์์ด์ค.",
|
| 509 |
-
"๋ถ์ "
|
| 510 |
-
],
|
| 511 |
-
[
|
| 512 |
-
"๋๋ฌด ์ธ๋ก์, ์ ์ ์ ๋ณด์ฌ์ค.",
|
| 513 |
-
"๋ถ์ "
|
| 514 |
-
],
|
| 515 |
-
[
|
| 516 |
-
"์ฐ์ฑ
์ข ๊ฐ๊ณ ์ถ์ด.",
|
| 517 |
-
"์ค๋ฆฝ"
|
| 518 |
-
],
|
| 519 |
-
[
|
| 520 |
-
"์ ๋ง ์ฌํผ, ์์์ค.",
|
| 521 |
-
"๋ถ์ "
|
| 522 |
-
],
|
| 523 |
-
[
|
| 524 |
-
"์คํธ๋ ์ค๊ฐ ๋๋ฌด ๋ง์, ์์์ค.",
|
| 525 |
-
"๋ถ์ "
|
| 526 |
-
]
|
| 527 |
-
]
|
| 528 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/text_mapping_example-checkpoint.ipynb
DELETED
|
@@ -1,90 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": 13,
|
| 6 |
-
"id": "8f925fb7-86ba-487f-ab85-88754d777860",
|
| 7 |
-
"metadata": {
|
| 8 |
-
"tags": []
|
| 9 |
-
},
|
| 10 |
-
"outputs": [],
|
| 11 |
-
"source": [
|
| 12 |
-
"import json\n",
|
| 13 |
-
"with open(\"text/text_label.json\",\"r\",encoding='utf-8') as f:\n",
|
| 14 |
-
" text_label = json.load(f)"
|
| 15 |
-
]
|
| 16 |
-
},
|
| 17 |
-
{
|
| 18 |
-
"cell_type": "code",
|
| 19 |
-
"execution_count": 14,
|
| 20 |
-
"id": "d2c0a048-1db7-4236-9f26-539ed31d3d27",
|
| 21 |
-
"metadata": {
|
| 22 |
-
"tags": []
|
| 23 |
-
},
|
| 24 |
-
"outputs": [],
|
| 25 |
-
"source": [
|
| 26 |
-
"import random\n",
|
| 27 |
-
"random.seed(0)\n",
|
| 28 |
-
"def post_process(model_output,text_label):\n",
|
| 29 |
-
" text_list = text_label[model_output]\n",
|
| 30 |
-
" text,sent = random.sample(text_list,1)[0]\n",
|
| 31 |
-
" return {'label' : model_output,\n",
|
| 32 |
-
" 'text' : text,\n",
|
| 33 |
-
" 'sentiment' : sent}"
|
| 34 |
-
]
|
| 35 |
-
},
|
| 36 |
-
{
|
| 37 |
-
"cell_type": "code",
|
| 38 |
-
"execution_count": 15,
|
| 39 |
-
"id": "f8ca0ad8-bc0c-4766-8e13-fe093c5290df",
|
| 40 |
-
"metadata": {
|
| 41 |
-
"tags": []
|
| 42 |
-
},
|
| 43 |
-
"outputs": [
|
| 44 |
-
{
|
| 45 |
-
"data": {
|
| 46 |
-
"text/plain": [
|
| 47 |
-
"{'label': 'bark', 'text': '์๋์ผ, ์๋์ผ!', 'sentiment': '๋ถ์ '}"
|
| 48 |
-
]
|
| 49 |
-
},
|
| 50 |
-
"execution_count": 15,
|
| 51 |
-
"metadata": {},
|
| 52 |
-
"output_type": "execute_result"
|
| 53 |
-
}
|
| 54 |
-
],
|
| 55 |
-
"source": [
|
| 56 |
-
"model_output = 'bark'\n",
|
| 57 |
-
"post_process(model_output,text_label)"
|
| 58 |
-
]
|
| 59 |
-
},
|
| 60 |
-
{
|
| 61 |
-
"cell_type": "code",
|
| 62 |
-
"execution_count": null,
|
| 63 |
-
"id": "da690a64-4dea-4b2a-89c1-23ea8bad955c",
|
| 64 |
-
"metadata": {},
|
| 65 |
-
"outputs": [],
|
| 66 |
-
"source": []
|
| 67 |
-
}
|
| 68 |
-
],
|
| 69 |
-
"metadata": {
|
| 70 |
-
"kernelspec": {
|
| 71 |
-
"display_name": "Python 3 (ipykernel)",
|
| 72 |
-
"language": "python",
|
| 73 |
-
"name": "python3"
|
| 74 |
-
},
|
| 75 |
-
"language_info": {
|
| 76 |
-
"codemirror_mode": {
|
| 77 |
-
"name": "ipython",
|
| 78 |
-
"version": 3
|
| 79 |
-
},
|
| 80 |
-
"file_extension": ".py",
|
| 81 |
-
"mimetype": "text/x-python",
|
| 82 |
-
"name": "python",
|
| 83 |
-
"nbconvert_exporter": "python",
|
| 84 |
-
"pygments_lexer": "ipython3",
|
| 85 |
-
"version": "3.10.8"
|
| 86 |
-
}
|
| 87 |
-
},
|
| 88 |
-
"nbformat": 4,
|
| 89 |
-
"nbformat_minor": 5
|
| 90 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -7,11 +7,12 @@ from transformers import pipeline
|
|
| 7 |
from datasets import Dataset, Audio
|
| 8 |
import gradio as gr
|
| 9 |
import torch
|
| 10 |
-
|
|
|
|
| 11 |
# Set model & Dataset NM
|
| 12 |
MODEL_NAME = "Gae8J/gaepago-20"
|
| 13 |
DATASET_NAME = "Gae8J/modeling_v1"
|
| 14 |
-
|
| 15 |
# Import Model & feature extractor
|
| 16 |
# model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)
|
| 17 |
from transformers import AutoConfig
|
|
@@ -21,6 +22,9 @@ feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
|
|
| 21 |
|
| 22 |
# ๋ชจ๋ธ cpu๋ก ๋ณ๊ฒฝํ์ฌ ์งํ
|
| 23 |
model.to("cpu")
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
# Gaepago Inference Model function
|
| 26 |
def gaepago_fn(tmp_audio_dir):
|
|
@@ -37,7 +41,10 @@ def gaepago_fn(tmp_audio_dir):
|
|
| 37 |
predicted_class_ids = torch.argmax(logits).item()
|
| 38 |
predicted_label = config.id2label[predicted_class_ids]
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
# Main
|
| 43 |
example_list = ["./sample/bark_sample.wav"
|
|
|
|
| 7 |
from datasets import Dataset, Audio
|
| 8 |
import gradio as gr
|
| 9 |
import torch
|
| 10 |
+
from utils.postprocess import text_mapping
|
| 11 |
+
import json
|
| 12 |
# Set model & Dataset NM
|
| 13 |
MODEL_NAME = "Gae8J/gaepago-20"
|
| 14 |
DATASET_NAME = "Gae8J/modeling_v1"
|
| 15 |
+
TEXT_LABEL = "text_label.json"
|
| 16 |
# Import Model & feature extractor
|
| 17 |
# model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)
|
| 18 |
from transformers import AutoConfig
|
|
|
|
| 22 |
|
| 23 |
# ๋ชจ๋ธ cpu๋ก ๋ณ๊ฒฝํ์ฌ ์งํ
|
| 24 |
model.to("cpu")
|
| 25 |
+
# TEXT LABEL ๋ถ๋ฌ์ค๊ธฐ
|
| 26 |
+
with open(TEXT_LABEL,"r",encoding='utf-8') as f:
|
| 27 |
+
text_label = json.load(f)
|
| 28 |
|
| 29 |
# Gaepago Inference Model function
|
| 30 |
def gaepago_fn(tmp_audio_dir):
|
|
|
|
| 41 |
predicted_class_ids = torch.argmax(logits).item()
|
| 42 |
predicted_label = config.id2label[predicted_class_ids]
|
| 43 |
|
| 44 |
+
# add postprocessing
|
| 45 |
+
## 1. text mapping
|
| 46 |
+
output = text_mapping(predicted_label,text_label)
|
| 47 |
+
return output
|
| 48 |
|
| 49 |
# Main
|
| 50 |
example_list = ["./sample/bark_sample.wav"
|
text_mapping_example.ipynb
CHANGED
|
@@ -82,7 +82,7 @@
|
|
| 82 |
"name": "python",
|
| 83 |
"nbconvert_exporter": "python",
|
| 84 |
"pygments_lexer": "ipython3",
|
| 85 |
-
"version": "3.8
|
| 86 |
}
|
| 87 |
},
|
| 88 |
"nbformat": 4,
|
|
|
|
| 82 |
"name": "python",
|
| 83 |
"nbconvert_exporter": "python",
|
| 84 |
"pygments_lexer": "ipython3",
|
| 85 |
+
"version": "3.10.8"
|
| 86 |
}
|
| 87 |
},
|
| 88 |
"nbformat": 4,
|
utils/__init__.py
ADDED
|
File without changes
|
utils/postprocess.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
|
| 3 |
+
def text_mapping(model_output,text_label):
|
| 4 |
+
text_list = text_label[model_output]
|
| 5 |
+
text,sent = random.sample(text_list,1)[0]
|
| 6 |
+
return {'label' : model_output,
|
| 7 |
+
'text' : text,
|
| 8 |
+
'sentiment' : sent}
|