--- title: EUDR Chabo Generator emoji: 🤖 colorFrom: blue colorTo: purple sdk: docker pinned: false license: mit --- # ChatFed Generator - MCP Server A language model-based generation service designed for ChatFed RAG (Retrieval-Augmented Generation) pipelines. This module serves as an **MCP (Model Context Protocol) server** that generates contextual responses using configurable LLM providers with support for retrieval result processing. ## MCP Endpoint The main MCP function is `generate` which provides context-aware text generation using configurable LLM providers when properly configured with API credentials. **Parameters**: - `query` (str, required): The question or query to be answered - `context` (str|list, required): Context for answering - can be plain text or list of retrieval result dictionaries **Returns**: String containing the generated answer based on the provided context and query. **Example usage**: ```python from gradio_client import Client client = Client("ENTER CONTAINER URL / SPACE ID") result = client.predict( query="What are the key findings?", context="Your relevant documents or context here...", api_name="/generate" ) print(result) ``` ## Configuration ### LLM Provider Configuration 1. Set your preferred inference provider in `params.cfg` 2. Configure the model and generation parameters 3. Set the required API key environment variable 4. [Optional] Adjust temperature and max_tokens settings 5. Run the app: ```bash docker build -t chatfed-generator . docker run -p 7860:7860 chatfed-generator ``` ## Environment Variables Required # Make sure to set the appropriate environment variables: # - OpenAI: `OPENAI_API_KEY` # - Anthropic: `ANTHROPIC_API_KEY` # - Cohere: `COHERE_API_KEY` # - HuggingFace: `HF_TOKEN`