Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -79,14 +79,14 @@ NUM_IMAGES_PER_PROMPT = 3
|
|
| 79 |
|
| 80 |
if torch.cuda.is_available():
|
| 81 |
pipe = DiffusionPipeline.from_pretrained(
|
| 82 |
-
"
|
| 83 |
torch_dtype=torch.float16,
|
| 84 |
use_safetensors=True,
|
| 85 |
add_watermarker=False,
|
| 86 |
variant="fp16",
|
| 87 |
)
|
| 88 |
pipe2 = DiffusionPipeline.from_pretrained(
|
| 89 |
-
"SG161222/
|
| 90 |
torch_dtype=torch.float16,
|
| 91 |
use_safetensors=True,
|
| 92 |
add_watermarker=False,
|
|
@@ -101,8 +101,8 @@ if torch.cuda.is_available():
|
|
| 101 |
print("Loaded on Device!")
|
| 102 |
|
| 103 |
if USE_TORCH_COMPILE:
|
| 104 |
-
pipe.unet = torch.compile(pipe.unet)
|
| 105 |
-
pipe2.unet = torch.compile(pipe2.unet)
|
| 106 |
print("Model Compiled!")
|
| 107 |
|
| 108 |
|
|
@@ -122,14 +122,14 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
| 122 |
def generate(
|
| 123 |
prompt: str,
|
| 124 |
negative_prompt: str = "",
|
| 125 |
-
use_negative_prompt: bool =
|
| 126 |
style: str = DEFAULT_STYLE,
|
| 127 |
-
seed: int =
|
| 128 |
width: int = 896,
|
| 129 |
height: int = 1152,
|
| 130 |
guidance_scale: float = 3,
|
| 131 |
randomize_seed: bool = False,
|
| 132 |
-
use_resolution_binning: bool =
|
| 133 |
progress=gr.Progress(track_tqdm=True),
|
| 134 |
):
|
| 135 |
|
|
@@ -143,7 +143,7 @@ def generate(
|
|
| 143 |
"width": width,
|
| 144 |
"height": height,
|
| 145 |
"guidance_scale": guidance_scale,
|
| 146 |
-
"num_inference_steps":
|
| 147 |
"generator": generator,
|
| 148 |
"num_images_per_prompt": NUM_IMAGES_PER_PROMPT,
|
| 149 |
"use_resolution_binning": use_resolution_binning,
|
|
@@ -158,7 +158,9 @@ def generate(
|
|
| 158 |
|
| 159 |
examples = [
|
| 160 |
(
|
| 161 |
-
"
|
|
|
|
|
|
|
| 162 |
),
|
| 163 |
]
|
| 164 |
|
|
@@ -284,4 +286,4 @@ with gr.Blocks(css=css, theme="rawrsor1/Everforest") as demo:
|
|
| 284 |
)
|
| 285 |
|
| 286 |
if __name__ == "__main__":
|
| 287 |
-
demo.queue(max_size=20).launch()
|
|
|
|
| 79 |
|
| 80 |
if torch.cuda.is_available():
|
| 81 |
pipe = DiffusionPipeline.from_pretrained(
|
| 82 |
+
"SG161222/RealVisXL_V4.0",
|
| 83 |
torch_dtype=torch.float16,
|
| 84 |
use_safetensors=True,
|
| 85 |
add_watermarker=False,
|
| 86 |
variant="fp16",
|
| 87 |
)
|
| 88 |
pipe2 = DiffusionPipeline.from_pretrained(
|
| 89 |
+
"SG161222/RealVisXL_V3.0_Turbo",
|
| 90 |
torch_dtype=torch.float16,
|
| 91 |
use_safetensors=True,
|
| 92 |
add_watermarker=False,
|
|
|
|
| 101 |
print("Loaded on Device!")
|
| 102 |
|
| 103 |
if USE_TORCH_COMPILE:
|
| 104 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 105 |
+
pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True)
|
| 106 |
print("Model Compiled!")
|
| 107 |
|
| 108 |
|
|
|
|
| 122 |
def generate(
|
| 123 |
prompt: str,
|
| 124 |
negative_prompt: str = "",
|
| 125 |
+
use_negative_prompt: bool = False,
|
| 126 |
style: str = DEFAULT_STYLE,
|
| 127 |
+
seed: int = 0,
|
| 128 |
width: int = 896,
|
| 129 |
height: int = 1152,
|
| 130 |
guidance_scale: float = 3,
|
| 131 |
randomize_seed: bool = False,
|
| 132 |
+
use_resolution_binning: bool = True,
|
| 133 |
progress=gr.Progress(track_tqdm=True),
|
| 134 |
):
|
| 135 |
|
|
|
|
| 143 |
"width": width,
|
| 144 |
"height": height,
|
| 145 |
"guidance_scale": guidance_scale,
|
| 146 |
+
"num_inference_steps": 25,
|
| 147 |
"generator": generator,
|
| 148 |
"num_images_per_prompt": NUM_IMAGES_PER_PROMPT,
|
| 149 |
"use_resolution_binning": use_resolution_binning,
|
|
|
|
| 158 |
|
| 159 |
examples = [
|
| 160 |
(
|
| 161 |
+
"college life of 21 year old, depth of field, bokeh, shallow"
|
| 162 |
+
" focus, minimalism, fujifilm xh2s with Canon EF lens, cinematic --ar 85:128"
|
| 163 |
+
" --v 6.0 --style raw"
|
| 164 |
),
|
| 165 |
]
|
| 166 |
|
|
|
|
| 286 |
)
|
| 287 |
|
| 288 |
if __name__ == "__main__":
|
| 289 |
+
demo.queue(max_size=20).launch()
|