Spaces:
Runtime error
Runtime error
Create mtm.py
Browse files
mtm.py
ADDED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import transformers
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from torch.utils.data.sampler import RandomSampler
|
| 5 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 6 |
+
from torch.utils.data.dataloader import DataLoader
|
| 7 |
+
from transformers.data.data_collator import DataCollator
|
| 8 |
+
from transformers.data.data_collator import DataCollatorWithPadding, InputDataClass
|
| 9 |
+
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
|
| 10 |
+
from transformers import is_torch_tpu_available
|
| 11 |
+
import numpy as np
|
| 12 |
+
|
| 13 |
+
class MultitaskModel(transformers.PreTrainedModel):
|
| 14 |
+
def __init__(self, encoder, taskmodels_dict):
|
| 15 |
+
"""
|
| 16 |
+
Setting MultitaskModel up as a PretrainedModel allows us
|
| 17 |
+
to take better advantage of Trainer features
|
| 18 |
+
"""
|
| 19 |
+
super().__init__(transformers.PretrainedConfig())
|
| 20 |
+
|
| 21 |
+
self.encoder = encoder
|
| 22 |
+
self.taskmodels_dict = nn.ModuleDict(taskmodels_dict)
|
| 23 |
+
|
| 24 |
+
@classmethod
|
| 25 |
+
def create(cls, model_name, model_type_dict, model_config_dict):
|
| 26 |
+
"""
|
| 27 |
+
This creates a MultitaskModel using the model class and config objects
|
| 28 |
+
from single-task models.
|
| 29 |
+
|
| 30 |
+
We do this by creating each single-task model, and having them share
|
| 31 |
+
the same encoder transformer.
|
| 32 |
+
"""
|
| 33 |
+
shared_encoder = None
|
| 34 |
+
taskmodels_dict = {}
|
| 35 |
+
do = nn.Dropout(p=0.2)
|
| 36 |
+
for task_name, model_type in model_type_dict.items():
|
| 37 |
+
model = model_type.from_pretrained(
|
| 38 |
+
model_name,
|
| 39 |
+
config=model_config_dict[task_name],
|
| 40 |
+
)
|
| 41 |
+
if shared_encoder is None:
|
| 42 |
+
shared_encoder = getattr(
|
| 43 |
+
model, cls.get_encoder_attr_name(model))
|
| 44 |
+
else:
|
| 45 |
+
setattr(model, cls.get_encoder_attr_name(
|
| 46 |
+
model), shared_encoder)
|
| 47 |
+
taskmodels_dict[task_name] = model
|
| 48 |
+
return cls(encoder=shared_encoder, taskmodels_dict=taskmodels_dict)
|
| 49 |
+
|
| 50 |
+
@classmethod
|
| 51 |
+
def get_encoder_attr_name(cls, model):
|
| 52 |
+
"""
|
| 53 |
+
The encoder transformer is named differently in each model "architecture".
|
| 54 |
+
This method lets us get the name of the encoder attribute
|
| 55 |
+
"""
|
| 56 |
+
model_class_name = model.__class__.__name__
|
| 57 |
+
if model_class_name.startswith("Bert"):
|
| 58 |
+
return "bert"
|
| 59 |
+
elif model_class_name.startswith("Roberta"):
|
| 60 |
+
return "roberta"
|
| 61 |
+
elif model_class_name.startswith("Albert"):
|
| 62 |
+
return "albert"
|
| 63 |
+
else:
|
| 64 |
+
raise KeyError(f"Add support for new model {model_class_name}")
|
| 65 |
+
|
| 66 |
+
def forward(self, task_name, **kwargs):
|
| 67 |
+
return self.taskmodels_dict[task_name](**kwargs)
|
| 68 |
+
|
| 69 |
+
def get_model(self, task_name):
|
| 70 |
+
return self.taskmodels_dict[task_name]
|
| 71 |
+
|
| 72 |
+
class NLPDataCollator(DataCollatorWithPadding): # DataCollatorWithPadding
|
| 73 |
+
"""
|
| 74 |
+
Extending the existing DataCollator to work with NLP dataset batches
|
| 75 |
+
"""
|
| 76 |
+
|
| 77 |
+
def collate_batch(self, features: List[Union[InputDataClass, Dict]]) -> Dict[str, torch.Tensor]:
|
| 78 |
+
first = features[0]
|
| 79 |
+
batch = None
|
| 80 |
+
if isinstance(first, dict):
|
| 81 |
+
# NLP data sets current works presents features as lists of dictionary
|
| 82 |
+
# (one per example), so we will adapt the collate_batch logic for that
|
| 83 |
+
if "labels" in first and first["labels"] is not None:
|
| 84 |
+
if first["labels"].dtype == torch.int64:
|
| 85 |
+
labels = torch.tensor([f["labels"]
|
| 86 |
+
for f in features], dtype=torch.long)
|
| 87 |
+
else:
|
| 88 |
+
labels = torch.tensor([f["labels"]
|
| 89 |
+
for f in features], dtype=torch.float)
|
| 90 |
+
batch = {"labels": labels}
|
| 91 |
+
for k, v in first.items():
|
| 92 |
+
if k != "labels" and v is not None and not isinstance(v, str):
|
| 93 |
+
batch[k] = torch.stack([f[k] for f in features])
|
| 94 |
+
return batch
|
| 95 |
+
else:
|
| 96 |
+
# otherwise, revert to using the default collate_batch
|
| 97 |
+
return DataCollatorWithPadding().collate_batch(features)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
class StrIgnoreDevice(str):
|
| 101 |
+
"""
|
| 102 |
+
This is a hack. The Trainer is going call .to(device) on every input
|
| 103 |
+
value, but we need to pass in an additional `task_name` string.
|
| 104 |
+
This prevents it from throwing an error
|
| 105 |
+
"""
|
| 106 |
+
|
| 107 |
+
def to(self, device):
|
| 108 |
+
return self
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
class DataLoaderWithTaskname:
|
| 112 |
+
"""
|
| 113 |
+
Wrapper around a DataLoader to also yield a task name
|
| 114 |
+
"""
|
| 115 |
+
|
| 116 |
+
def __init__(self, task_name, data_loader):
|
| 117 |
+
self.task_name = task_name
|
| 118 |
+
self.data_loader = data_loader
|
| 119 |
+
|
| 120 |
+
self.batch_size = data_loader.batch_size
|
| 121 |
+
self.dataset = data_loader.dataset
|
| 122 |
+
|
| 123 |
+
def __len__(self):
|
| 124 |
+
return len(self.data_loader)
|
| 125 |
+
|
| 126 |
+
def __iter__(self):
|
| 127 |
+
for batch in self.data_loader:
|
| 128 |
+
batch["task_name"] = StrIgnoreDevice(self.task_name)
|
| 129 |
+
yield batch
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class MultitaskDataloader:
|
| 133 |
+
"""
|
| 134 |
+
Data loader that combines and samples from multiple single-task
|
| 135 |
+
data loaders.
|
| 136 |
+
"""
|
| 137 |
+
|
| 138 |
+
def __init__(self, dataloader_dict):
|
| 139 |
+
self.dataloader_dict = dataloader_dict
|
| 140 |
+
self.num_batches_dict = {
|
| 141 |
+
task_name: len(dataloader)
|
| 142 |
+
for task_name, dataloader in self.dataloader_dict.items()
|
| 143 |
+
}
|
| 144 |
+
self.task_name_list = list(self.dataloader_dict)
|
| 145 |
+
self.dataset = [None] * sum(
|
| 146 |
+
len(dataloader.dataset)
|
| 147 |
+
for dataloader in self.dataloader_dict.values()
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
def __len__(self):
|
| 151 |
+
return sum(self.num_batches_dict.values())
|
| 152 |
+
|
| 153 |
+
def __iter__(self):
|
| 154 |
+
"""
|
| 155 |
+
For each batch, sample a task, and yield a batch from the respective
|
| 156 |
+
task Dataloader.
|
| 157 |
+
|
| 158 |
+
We use size-proportional sampling, but you could easily modify this
|
| 159 |
+
to sample from some-other distribution.
|
| 160 |
+
"""
|
| 161 |
+
task_choice_list = []
|
| 162 |
+
for i, task_name in enumerate(self.task_name_list):
|
| 163 |
+
task_choice_list += [i] * self.num_batches_dict[task_name]
|
| 164 |
+
task_choice_list = np.array(task_choice_list)
|
| 165 |
+
np.random.shuffle(task_choice_list)
|
| 166 |
+
dataloader_iter_dict = {
|
| 167 |
+
task_name: iter(dataloader)
|
| 168 |
+
for task_name, dataloader in self.dataloader_dict.items()
|
| 169 |
+
}
|
| 170 |
+
for task_choice in task_choice_list:
|
| 171 |
+
task_name = self.task_name_list[task_choice]
|
| 172 |
+
yield next(dataloader_iter_dict[task_name])
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
class MultitaskTrainer(transformers.Trainer):
|
| 176 |
+
|
| 177 |
+
def get_single_train_dataloader(self, task_name, train_dataset):
|
| 178 |
+
"""
|
| 179 |
+
Create a single-task data loader that also yields task names
|
| 180 |
+
"""
|
| 181 |
+
if self.train_dataset is None:
|
| 182 |
+
raise ValueError("Trainer: training requires a train_dataset.")
|
| 183 |
+
if False and is_torch_tpu_available():
|
| 184 |
+
train_sampler = get_tpu_sampler(train_dataset)
|
| 185 |
+
else:
|
| 186 |
+
train_sampler = (
|
| 187 |
+
RandomSampler(train_dataset)
|
| 188 |
+
if self.args.local_rank == -1
|
| 189 |
+
else DistributedSampler(train_dataset)
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
data_loader = DataLoaderWithTaskname(
|
| 193 |
+
task_name=task_name,
|
| 194 |
+
data_loader=DataLoader(
|
| 195 |
+
train_dataset,
|
| 196 |
+
batch_size=self.args.train_batch_size,
|
| 197 |
+
sampler=train_sampler,
|
| 198 |
+
collate_fn=self.data_collator.collate_batch,
|
| 199 |
+
),
|
| 200 |
+
)
|
| 201 |
+
return data_loader
|
| 202 |
+
|
| 203 |
+
def get_train_dataloader(self):
|
| 204 |
+
"""
|
| 205 |
+
Returns a MultitaskDataloader, which is not actually a Dataloader
|
| 206 |
+
but an iterable that returns a generator that samples from each
|
| 207 |
+
task Dataloader
|
| 208 |
+
"""
|
| 209 |
+
return MultitaskDataloader({
|
| 210 |
+
task_name: self.get_single_train_dataloader(
|
| 211 |
+
task_name, task_dataset)
|
| 212 |
+
for task_name, task_dataset in self.train_dataset.items()
|
| 213 |
+
})
|
| 214 |
+
|