Aduc-sdr-2_5s / video_service.py
euIaxs22's picture
Update video_service.py
cec5209 verified
raw
history blame
15.1 kB
# video_service.py
import torch
import numpy as np
import random
import os
import yaml
from pathlib import Path
import imageio
import tempfile
import sys
import subprocess
import threading
import time
from huggingface_hub import hf_hub_download
# --- LÓGICA DE SETUP E DEPENDÊNCIAS ---
def run_setup():
setup_script_path = "setup.py"
if not os.path.exists(setup_script_path):
print("AVISO: script 'setup.py' não encontrado. Pulando a clonagem de dependências.")
return
try:
print("--- Executando setup.py para garantir que as dependências estão presentes ---")
subprocess.run([sys.executable, setup_script_path], check=True)
print("--- Setup concluído com sucesso ---")
except subprocess.CalledProcessError as e:
print(f"ERRO CRÍTICO DURANTE O SETUP: 'setup.py' falhou com código {e.returncode}.")
sys.exit(1)
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
if not LTX_VIDEO_REPO_DIR.exists():
run_setup()
def add_deps_to_path():
if not LTX_VIDEO_REPO_DIR.exists():
raise FileNotFoundError(f"Repositório LTX-Video não encontrado em '{LTX_VIDEO_REPO_DIR}'. Execute o setup.")
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
sys.path.insert(0, str(LTX_VIDEO_REPO_DIR.resolve()))
#add_deps_to_path()
# Importações específicas do modelo
from inference import (
create_ltx_video_pipeline, create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop, seed_everething,
calculate_padding, load_media_file
)
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
# --- CONFIGURAÇÃO DA DISTRIBUIÇÃO DE GPUS ---
GPU_MAPPING = [
{'base': 'cuda:0', 'upscaler': 'cuda:2'},
{'base': 'cuda:1', 'upscaler': 'cuda:3'}
]
class VideoService:
def __init__(self):
print("Inicializando VideoService (modo Lazy Loading)...")
self.models_loaded = False
self.workers = None
self.config = self._load_config()
self.models_dir = "downloaded_models"
self.loading_lock = threading.Lock() # Para evitar que múltiplos usuários iniciem o carregamento ao mesmo tempo
def _ensure_models_are_loaded(self):
"""Verifica se os modelos estão carregados e os carrega se não estiverem."""
with self.loading_lock:
if not self.models_loaded:
print("Primeira requisição recebida. Iniciando carregamento dos modelos...")
if torch.cuda.is_available() and torch.cuda.device_count() < 4:
raise RuntimeError(f"Este serviço está configurado para 4 GPUs, mas apenas {torch.cuda.device_count()} foram encontradas.")
self._download_model_files()
self.workers = self._initialize_workers()
self.models_loaded = True
print(f"Modelos carregados com sucesso. {len(self.workers)} workers prontos.")
def _load_config(self):
config_file_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled.yaml"
with open(config_file_path, "r") as file:
return yaml.safe_load(file)
def _download_model_files(self):
Path(self.models_dir).mkdir(parents=True, exist_ok=True)
LTX_REPO = "Lightricks/LTX-Video"
print("Baixando arquivos de modelo (se necessário)...")
self.distilled_model_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["checkpoint_path"], local_dir=self.models_dir)
self.spatial_upscaler_path = hf_hub_download(repo_id=LTX_REPO, filename=self.config["spatial_upscaler_model_path"], local_dir=self.models_dir)
print("Download de modelos concluído.")
def _load_models_for_worker(self, base_device, upscaler_device):
print(f"Carregando modelo base para {base_device} e upscaler para {upscaler_device}")
pipeline = create_ltx_video_pipeline(
ckpt_path=self.distilled_model_path, precision=self.config["precision"],
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
sampler=self.config["sampler"], device="cpu", enhance_prompt=False,
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
)
latent_upsampler = create_latent_upsampler(self.spatial_upscaler_path, device="cpu")
pipeline.to(base_device)
latent_upsampler.to(upscaler_device)
return pipeline, latent_upsampler
def _initialize_workers(self):
workers = []
for i, mapping in enumerate(GPU_MAPPING):
print(f"--- Inicializando Worker {i} ---")
pipeline, latent_upsampler = self._load_models_for_worker(mapping['base'], mapping['upscaler'])
workers.append({"id": i, "base_pipeline": pipeline, "latent_upsampler": latent_upsampler, "devices": mapping, "lock": threading.Lock()})
return workers
def _acquire_worker(self):
while True:
for worker in self.workers:
if worker["lock"].acquire(blocking=False):
print(f"Worker {worker['id']} adquirido para uma nova tarefa.")
return worker
time.sleep(0.1)
def generate(self, prompt, negative_prompt, input_image_filepath=None, input_video_filepath=None, height=512, width=704, mode="text-to-video", duration=2.0, frames_to_use=9, seed=42, randomize_seed=True, guidance_scale=1.0, # Agora usado corretamente
improve_texture=True, progress_callback=None):
self._ensure_models_are_loaded()
worker = self._acquire_worker()
base_device = worker['devices']['base']
upscaler_device = worker['devices']['upscaler']
try:
# Validações alinhadas com app-20.py
if mode == "image-to-video" and not input_image_filepath:
raise ValueError("Caminho da imagem obrigatório para o modo image-to-video")
if mode == "video-to-video" and not input_video_filepath:
raise ValueError("Caminho do vídeo obrigatório para o modo video-to-video")
used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed)
seed_everething(used_seed)
FPS = 30.0 # Alinhado com app-20.py
MAX_NUM_FRAMES = 257
target_frames_ideal = duration * FPS
target_frames_rounded = round(target_frames_ideal)
if target_frames_rounded < 1: target_frames_rounded = 1
n_val = round(float(target_frames_rounded - 1.0) / 8.0)
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
actual_height = int(height)
actual_width = int(width)
height_padded = (actual_height - 1) // 32 * 32 + 32
width_padded = (actual_width - 1) // 32 * 32 + 32
num_frames_padded = (actual_num_frames - 2) // 8 * 8 + 1 # Alinhamento exato com app-20.py
if num_frames_padded != actual_num_frames:
print(f"Warning: actual_num_frames {actual_num_frames} and num_frames_padded {num_frames_padded} differ. Using num_frames_padded for pipeline.")
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
pad_left, pad_right, pad_top, pad_bottom = padding_values
# Kwargs base alinhados
call_kwargs = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"height": height_padded,
"width": width_padded,
"num_frames": num_frames_padded,
"framerate": int(FPS),
"generator": torch.Generator(device=base_device).manual_seed(used_seed),
"output_type": "pt",
"conditioning_items": None,
"media_items": None,
"decode_timestep": self.config['decode_timestep'],
"decode_noise_scale": self.config['decode_noise_scale'],
"stochastic_sampling": self.config['stochastic_sampling'],
"image_cond_noise_scale": 0.15, # Alinhado
"is_video": True,
"vae_per_channel_normalize": True,
"mixed_precision": self.config['precision'] + " mixed_precision",
"offload_to_cpu": False,
"enhance_prompt": False,
}
# Estratégia de skip layer alinhada
stg_mode_str = self.config.get('stg_mode', 'attention_values')
if stg_mode_str.lower() in ['stgav', 'attentionvalues']:
call_kwargs['skip_layer_strategy'] = SkipLayerStrategy.AttentionValues
# ... (adicionar outros elif como no app-20.py)
# Conditioning para modos
if mode == "image-to-video" and input_image_filepath:
media_tensor = load_image_to_tensor_with_resize_and_crop(input_image_filepath, actual_height, actual_width)
media_tensor = torch.nn.functional.pad(media_tensor, padding_values)
call_kwargs['conditioning_items'] = ConditioningItem(media_tensor.to(base_device), 0, 1.0)
elif mode == "video-to-video" and input_video_filepath:
call_kwargs['media_items'] = load_media_file(media_path=input_video_filepath, height=actual_height, width=actual_width, max_frames=int(frames_to_use), padding=padding_values).to(base_device)
result_images_tensor = None
if improve_texture:
# Alinhamento exato: Use LTXMultiScalePipeline como no app-20.py
active_latent_upsampler = worker['latent_upsampler']
if not active_latent_upsampler:
raise ValueError("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.")
multi_scale_pipeline_obj = LTXMultiScalePipeline(worker['base_pipeline'], active_latent_upsampler)
first_pass_args = self.config.get('first_pass', {}).copy()
first_pass_args['guidance_scale'] = float(guidance_scale) # Override UI
first_pass_args.pop('num_inference_steps', None)
second_pass_args = self.config.get('second_pass', {}).copy()
second_pass_args['guidance_scale'] = float(guidance_scale) # Override UI
second_pass_args.pop('num_inference_steps', None)
multi_scale_call_kwargs = call_kwargs.copy()
multi_scale_call_kwargs.update({
"downscale_factor": self.config['downscale_factor'],
"first_pass": first_pass_args,
"second_pass": second_pass_args,
})
print(f"Calling multi-scale pipeline eff. HxW {actual_height}x{actual_width}, Frames {actual_num_frames} - Padded {num_frames_padded} on {base_device}")
result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
else:
# Single-pass alinhado
single_pass_call_kwargs = call_kwargs.copy()
first_pass_config_from_yaml = self.config.get('first_pass', {})
single_pass_call_kwargs['timesteps'] = first_pass_config_from_yaml.get('timesteps')
single_pass_call_kwargs['guidance_scale'] = float(guidance_scale) # Override UI
single_pass_call_kwargs['stg_scale'] = first_pass_config_from_yaml.get('stg_scale')
single_pass_call_kwargs['rescaling_scale'] = first_pass_config_from_yaml.get('rescaling_scale')
single_pass_call_kwargs['skip_block_list'] = first_pass_config_from_yaml.get('skip_block_list')
single_pass_call_kwargs.pop('num_inference_steps', None)
single_pass_call_kwargs.pop('first_pass', None)
single_pass_call_kwargs.pop('second_pass', None)
single_pass_call_kwargs.pop('downscale_factor', None)
print(f"Calling base pipeline padded HxW {height_padded}x{width_padded}, Frames {actual_num_frames} - Padded {num_frames_padded} on {base_device}")
result_images_tensor = worker['base_pipeline'](**single_pass_call_kwargs).images
if result_images_tensor is None:
raise ValueError("Generation failed.")
# Slicing e salvamento alinhados
slice_h_end = -pad_bottom if pad_bottom > 0 else None
slice_w_end = -pad_right if pad_right > 0 else None
result_images_tensor = result_images_tensor[:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end]
video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
video_np = np.clip(video_np, 0, 1) * 255.0
video_np = video_np.astype(np.uint8)
temp_dir = tempfile.mkdtemp()
output_video_path = os.path.join(temp_dir, f"output_{used_seed}.mp4")
try:
with imageio.get_writer(output_video_path, fps=call_kwargs['framerate'], macro_block_size=1) as video_writer:
for frame_idx in range(video_np.shape[0]):
if progress_callback:
progress_callback(frame_idx / video_np.shape[0], desc="Saving video")
video_writer.append_data(video_np[frame_idx])
except Exception as e:
print(f"Error saving video with macro_block_size=1: {e}")
with imageio.get_writer(output_video_path, fps=call_kwargs['framerate'], format='FFMPEG', codec='libx264', quality=8) as video_writer:
for frame_idx in range(video_np.shape[0]):
if progress_callback:
progress_callback(frame_idx / video_np.shape[0], desc="Saving video fallback ffmpeg")
video_writer.append_data(video_np[frame_idx])
return output_video_path, used_seed
except Exception as e:
print(f"!!!!!!!! ERRO no Worker {worker['id']}: {e} !!!!!!!!")
raise e
finally:
print(f"Worker {worker['id']} Tarefa finalizada. Limpando cache e liberando worker...")
with torch.cuda.device(base_device):
torch.cuda.empty_cache()
with torch.cuda.device(upscaler_device):
torch.cuda.empty_cache()
worker['lock'].release()
# A instância do serviço é criada aqui, mas os modelos só serão carregados no primeiro clique.
video_generation_service = VideoService()