Spaces:
Sleeping
Sleeping
Upload 14 files
Browse files- .gitattributes +4 -0
- Questgen/__pycache__/main.cpython-312.pyc +0 -0
- Questgen/main.py +608 -0
- b/b.py +3 -0
- m2.py +77 -0
- s2v_old/._cfg +0 -0
- s2v_old/._freqs.json +0 -0
- s2v_old/._key2row +0 -0
- s2v_old/._strings.json +0 -0
- s2v_old/._vectors +0 -0
- s2v_old/cfg +36 -0
- s2v_old/freqs.json +3 -0
- s2v_old/key2row +3 -0
- s2v_old/strings.json +3 -0
- s2v_old/vectors +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
s2v_old/freqs.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
s2v_old/key2row filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
s2v_old/strings.json filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
s2v_old/vectors filter=lfs diff=lfs merge=lfs -text
|
Questgen/__pycache__/main.cpython-312.pyc
ADDED
|
Binary file (26.8 kB). View file
|
|
|
Questgen/main.py
ADDED
|
@@ -0,0 +1,608 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np # linear algebra
|
| 2 |
+
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
|
| 3 |
+
import time
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import T5ForConditionalGeneration,T5Tokenizer
|
| 6 |
+
import random
|
| 7 |
+
import spacy
|
| 8 |
+
import zipfile
|
| 9 |
+
import os
|
| 10 |
+
import json
|
| 11 |
+
from sense2vec import Sense2Vec
|
| 12 |
+
import requests
|
| 13 |
+
from collections import OrderedDict
|
| 14 |
+
import string
|
| 15 |
+
import pke
|
| 16 |
+
import nltk
|
| 17 |
+
import numpy
|
| 18 |
+
from nltk import FreqDist
|
| 19 |
+
nltk.download('brown', quiet=True, force=True)
|
| 20 |
+
nltk.download('stopwords', quiet=True, force=True)
|
| 21 |
+
nltk.download('popular', quiet=True, force=True)
|
| 22 |
+
from nltk.corpus import stopwords
|
| 23 |
+
from nltk.corpus import brown
|
| 24 |
+
from similarity.normalized_levenshtein import NormalizedLevenshtein
|
| 25 |
+
from nltk.tokenize import sent_tokenize
|
| 26 |
+
from flashtext import KeywordProcessor
|
| 27 |
+
# from Questgen.encoding.encoding import beam_search_decoding
|
| 28 |
+
# from Questgen.mcq.mcq import tokenize_sentences
|
| 29 |
+
# from Questgen.mcq.mcq import get_keywords
|
| 30 |
+
# from Questgen.mcq.mcq import get_sentences_for_keyword
|
| 31 |
+
# from Questgen.mcq.mcq import generate_questions_mcq
|
| 32 |
+
# from Questgen.mcq.mcq import generate_normal_questions
|
| 33 |
+
import time
|
| 34 |
+
import numpy as np # linear algebra
|
| 35 |
+
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
|
| 36 |
+
import time
|
| 37 |
+
import torch
|
| 38 |
+
from transformers import T5ForConditionalGeneration,T5Tokenizer
|
| 39 |
+
import random
|
| 40 |
+
import spacy
|
| 41 |
+
import zipfile
|
| 42 |
+
import os
|
| 43 |
+
import json
|
| 44 |
+
from sense2vec import Sense2Vec
|
| 45 |
+
import requests
|
| 46 |
+
from collections import OrderedDict
|
| 47 |
+
import string
|
| 48 |
+
import pke
|
| 49 |
+
import nltk
|
| 50 |
+
from nltk import FreqDist
|
| 51 |
+
nltk.download('brown')
|
| 52 |
+
nltk.download('stopwords')
|
| 53 |
+
nltk.download('popular')
|
| 54 |
+
from nltk.corpus import stopwords
|
| 55 |
+
from nltk.corpus import brown
|
| 56 |
+
# from similarity.normalized_levenshtein import NormalizedLevenshtein
|
| 57 |
+
from nltk.tokenize import sent_tokenize
|
| 58 |
+
# from flashtext import KeywordProcessor
|
| 59 |
+
|
| 60 |
+
def beam_search_decoding (inp_ids,attn_mask,model,tokenizer):
|
| 61 |
+
beam_output = model.generate(input_ids=inp_ids,
|
| 62 |
+
attention_mask=attn_mask,
|
| 63 |
+
max_length=256,
|
| 64 |
+
num_beams=10,
|
| 65 |
+
num_return_sequences=3,
|
| 66 |
+
no_repeat_ngram_size=2,
|
| 67 |
+
early_stopping=True
|
| 68 |
+
)
|
| 69 |
+
Questions = [tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True) for out in
|
| 70 |
+
beam_output]
|
| 71 |
+
return [Question.strip().capitalize() for Question in Questions]
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def MCQs_available(word,s2v):
|
| 76 |
+
word = word.replace(" ", "_")
|
| 77 |
+
sense = s2v.get_best_sense(word)
|
| 78 |
+
if sense is not None:
|
| 79 |
+
return True
|
| 80 |
+
else:
|
| 81 |
+
return False
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def edits(word):
|
| 85 |
+
"All edits that are one edit away from `word`."
|
| 86 |
+
letters = 'abcdefghijklmnopqrstuvwxyz '+string.punctuation
|
| 87 |
+
splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]
|
| 88 |
+
deletes = [L + R[1:] for L, R in splits if R]
|
| 89 |
+
transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1]
|
| 90 |
+
replaces = [L + c + R[1:] for L, R in splits if R for c in letters]
|
| 91 |
+
inserts = [L + c + R for L, R in splits for c in letters]
|
| 92 |
+
return set(deletes + transposes + replaces + inserts)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def sense2vec_get_words(word,s2v):
|
| 96 |
+
output = []
|
| 97 |
+
|
| 98 |
+
word_preprocessed = word.translate(word.maketrans("","", string.punctuation))
|
| 99 |
+
word_preprocessed = word_preprocessed.lower()
|
| 100 |
+
|
| 101 |
+
word_edits = edits(word_preprocessed)
|
| 102 |
+
|
| 103 |
+
word = word.replace(" ", "_")
|
| 104 |
+
|
| 105 |
+
sense = s2v.get_best_sense(word)
|
| 106 |
+
most_similar = s2v.most_similar(sense, n=15)
|
| 107 |
+
|
| 108 |
+
compare_list = [word_preprocessed]
|
| 109 |
+
for each_word in most_similar:
|
| 110 |
+
append_word = each_word[0].split("|")[0].replace("_", " ")
|
| 111 |
+
append_word = append_word.strip()
|
| 112 |
+
append_word_processed = append_word.lower()
|
| 113 |
+
append_word_processed = append_word_processed.translate(append_word_processed.maketrans("","", string.punctuation))
|
| 114 |
+
if append_word_processed not in compare_list and word_preprocessed not in append_word_processed and append_word_processed not in word_edits:
|
| 115 |
+
output.append(append_word.title())
|
| 116 |
+
compare_list.append(append_word_processed)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
out = list(OrderedDict.fromkeys(output))
|
| 120 |
+
|
| 121 |
+
return out
|
| 122 |
+
|
| 123 |
+
def get_options(answer,s2v):
|
| 124 |
+
distractors =[]
|
| 125 |
+
|
| 126 |
+
try:
|
| 127 |
+
distractors = sense2vec_get_words(answer,s2v)
|
| 128 |
+
if len(distractors) > 0:
|
| 129 |
+
print(" Sense2vec_distractors successful for word : ", answer)
|
| 130 |
+
return distractors,"sense2vec"
|
| 131 |
+
except:
|
| 132 |
+
print (" Sense2vec_distractors failed for word : ",answer)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
return distractors,"None"
|
| 136 |
+
|
| 137 |
+
def tokenize_sentences(text):
|
| 138 |
+
sentences = [sent_tokenize(text)]
|
| 139 |
+
sentences = [y for x in sentences for y in x]
|
| 140 |
+
# Remove any short sentences less than 20 letters.
|
| 141 |
+
sentences = [sentence.strip() for sentence in sentences if len(sentence) > 20]
|
| 142 |
+
return sentences
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def get_sentences_for_keyword(keywords, sentences):
|
| 146 |
+
keyword_processor = KeywordProcessor()
|
| 147 |
+
keyword_sentences = {}
|
| 148 |
+
for word in keywords:
|
| 149 |
+
word = word.strip()
|
| 150 |
+
keyword_sentences[word] = []
|
| 151 |
+
keyword_processor.add_keyword(word)
|
| 152 |
+
for sentence in sentences:
|
| 153 |
+
keywords_found = keyword_processor.extract_keywords(sentence)
|
| 154 |
+
for key in keywords_found:
|
| 155 |
+
keyword_sentences[key].append(sentence)
|
| 156 |
+
|
| 157 |
+
for key in keyword_sentences.keys():
|
| 158 |
+
values = keyword_sentences[key]
|
| 159 |
+
values = sorted(values, key=len, reverse=True)
|
| 160 |
+
keyword_sentences[key] = values
|
| 161 |
+
|
| 162 |
+
delete_keys = []
|
| 163 |
+
for k in keyword_sentences.keys():
|
| 164 |
+
if len(keyword_sentences[k]) == 0:
|
| 165 |
+
delete_keys.append(k)
|
| 166 |
+
for del_key in delete_keys:
|
| 167 |
+
del keyword_sentences[del_key]
|
| 168 |
+
|
| 169 |
+
return keyword_sentences
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def is_far(words_list,currentword,thresh,normalized_levenshtein):
|
| 173 |
+
threshold = thresh
|
| 174 |
+
score_list =[]
|
| 175 |
+
for word in words_list:
|
| 176 |
+
score_list.append(normalized_levenshtein.distance(word.lower(),currentword.lower()))
|
| 177 |
+
if min(score_list)>=threshold:
|
| 178 |
+
return True
|
| 179 |
+
else:
|
| 180 |
+
return False
|
| 181 |
+
|
| 182 |
+
def filter_phrases(phrase_keys,max,normalized_levenshtein ):
|
| 183 |
+
filtered_phrases =[]
|
| 184 |
+
if len(phrase_keys)>0:
|
| 185 |
+
filtered_phrases.append(phrase_keys[0])
|
| 186 |
+
for ph in phrase_keys[1:]:
|
| 187 |
+
if is_far(filtered_phrases,ph,0.7,normalized_levenshtein ):
|
| 188 |
+
filtered_phrases.append(ph)
|
| 189 |
+
if len(filtered_phrases)>=max:
|
| 190 |
+
break
|
| 191 |
+
return filtered_phrases
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def get_nouns_multipartite(text):
|
| 195 |
+
out = []
|
| 196 |
+
|
| 197 |
+
extractor = pke.unsupervised.MultipartiteRank()
|
| 198 |
+
extractor.load_document(input=text, language='en')
|
| 199 |
+
pos = {'PROPN', 'NOUN'}
|
| 200 |
+
stoplist = list(string.punctuation)
|
| 201 |
+
stoplist += stopwords.words('english')
|
| 202 |
+
extractor.candidate_selection(pos=pos)
|
| 203 |
+
# 4. build the Multipartite graph and rank candidates using random walk,
|
| 204 |
+
# alpha controls the weight adjustment mechanism, see TopicRank for
|
| 205 |
+
# threshold/method parameters.
|
| 206 |
+
try:
|
| 207 |
+
extractor.candidate_weighting(alpha=1.1,
|
| 208 |
+
threshold=0.75,
|
| 209 |
+
method='average')
|
| 210 |
+
except:
|
| 211 |
+
return out
|
| 212 |
+
|
| 213 |
+
keyphrases = extractor.get_n_best(n=10)
|
| 214 |
+
|
| 215 |
+
for key in keyphrases:
|
| 216 |
+
out.append(key[0])
|
| 217 |
+
|
| 218 |
+
return out
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def get_phrases(doc):
|
| 222 |
+
phrases={}
|
| 223 |
+
for np in doc.noun_chunks:
|
| 224 |
+
phrase =np.text
|
| 225 |
+
len_phrase = len(phrase.split())
|
| 226 |
+
if len_phrase > 1:
|
| 227 |
+
if phrase not in phrases:
|
| 228 |
+
phrases[phrase]=1
|
| 229 |
+
else:
|
| 230 |
+
phrases[phrase]=phrases[phrase]+1
|
| 231 |
+
|
| 232 |
+
phrase_keys=list(phrases.keys())
|
| 233 |
+
phrase_keys = sorted(phrase_keys, key= lambda x: len(x),reverse=True)
|
| 234 |
+
phrase_keys=phrase_keys[:50]
|
| 235 |
+
return phrase_keys
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def get_keywords(nlp,text,max_keywords,s2v,fdist,normalized_levenshtein,no_of_sentences):
|
| 240 |
+
doc = nlp(text)
|
| 241 |
+
max_keywords = int(max_keywords)
|
| 242 |
+
|
| 243 |
+
keywords = get_nouns_multipartite(text)
|
| 244 |
+
keywords = sorted(keywords, key=lambda x: fdist[x])
|
| 245 |
+
keywords = filter_phrases(keywords, max_keywords,normalized_levenshtein )
|
| 246 |
+
|
| 247 |
+
phrase_keys = get_phrases(doc)
|
| 248 |
+
filtered_phrases = filter_phrases(phrase_keys, max_keywords,normalized_levenshtein )
|
| 249 |
+
|
| 250 |
+
total_phrases = keywords + filtered_phrases
|
| 251 |
+
|
| 252 |
+
total_phrases_filtered = filter_phrases(total_phrases, min(max_keywords, 2*no_of_sentences),normalized_levenshtein )
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
answers = []
|
| 256 |
+
for answer in total_phrases_filtered:
|
| 257 |
+
if answer not in answers and MCQs_available(answer,s2v):
|
| 258 |
+
answers.append(answer)
|
| 259 |
+
|
| 260 |
+
answers = answers[:max_keywords]
|
| 261 |
+
return answers
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
def generate_questions_mcq(keyword_sent_mapping,device,tokenizer,model,sense2vec,normalized_levenshtein):
|
| 265 |
+
batch_text = []
|
| 266 |
+
answers = keyword_sent_mapping.keys()
|
| 267 |
+
for answer in answers:
|
| 268 |
+
txt = keyword_sent_mapping[answer]
|
| 269 |
+
context = "context: " + txt
|
| 270 |
+
text = context + " " + "answer: " + answer + " </s>"
|
| 271 |
+
batch_text.append(text)
|
| 272 |
+
|
| 273 |
+
encoding = tokenizer.batch_encode_plus(batch_text, pad_to_max_length=True, return_tensors="pt")
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
print ("Running model for generation")
|
| 277 |
+
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
|
| 278 |
+
|
| 279 |
+
with torch.no_grad():
|
| 280 |
+
outs = model.generate(input_ids=input_ids,
|
| 281 |
+
attention_mask=attention_masks,
|
| 282 |
+
max_length=150)
|
| 283 |
+
|
| 284 |
+
output_array ={}
|
| 285 |
+
output_array["questions"] =[]
|
| 286 |
+
# print(outs)
|
| 287 |
+
for index, val in enumerate(answers):
|
| 288 |
+
individual_question ={}
|
| 289 |
+
out = outs[index, :]
|
| 290 |
+
dec = tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
| 291 |
+
|
| 292 |
+
Question = dec.replace("question:", "")
|
| 293 |
+
Question = Question.strip()
|
| 294 |
+
individual_question["question_statement"] = Question
|
| 295 |
+
individual_question["question_type"] = "MCQ"
|
| 296 |
+
individual_question["answer"] = val
|
| 297 |
+
individual_question["id"] = index+1
|
| 298 |
+
individual_question["options"], individual_question["options_algorithm"] = get_options(val, sense2vec)
|
| 299 |
+
|
| 300 |
+
individual_question["options"] = filter_phrases(individual_question["options"], 10,normalized_levenshtein)
|
| 301 |
+
index = 3
|
| 302 |
+
individual_question["extra_options"]= individual_question["options"][index:]
|
| 303 |
+
individual_question["options"] = individual_question["options"][:index]
|
| 304 |
+
individual_question["context"] = keyword_sent_mapping[val]
|
| 305 |
+
|
| 306 |
+
if len(individual_question["options"])>0:
|
| 307 |
+
output_array["questions"].append(individual_question)
|
| 308 |
+
|
| 309 |
+
return output_array
|
| 310 |
+
|
| 311 |
+
def generate_normal_questions(keyword_sent_mapping,device,tokenizer,model): #for normal one word questions
|
| 312 |
+
batch_text = []
|
| 313 |
+
answers = keyword_sent_mapping.keys()
|
| 314 |
+
for answer in answers:
|
| 315 |
+
txt = keyword_sent_mapping[answer]
|
| 316 |
+
context = "context: " + txt
|
| 317 |
+
text = context + " " + "answer: " + answer + " </s>"
|
| 318 |
+
batch_text.append(text)
|
| 319 |
+
|
| 320 |
+
encoding = tokenizer.batch_encode_plus(batch_text, pad_to_max_length=True, return_tensors="pt")
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
print ("Running model for generation")
|
| 324 |
+
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
|
| 325 |
+
|
| 326 |
+
with torch.no_grad():
|
| 327 |
+
outs = model.generate(input_ids=input_ids,
|
| 328 |
+
attention_mask=attention_masks,
|
| 329 |
+
max_length=150)
|
| 330 |
+
|
| 331 |
+
output_array ={}
|
| 332 |
+
output_array["questions"] =[]
|
| 333 |
+
|
| 334 |
+
for index, val in enumerate(answers):
|
| 335 |
+
individual_quest= {}
|
| 336 |
+
out = outs[index, :]
|
| 337 |
+
dec = tokenizer.decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
| 338 |
+
|
| 339 |
+
Question= dec.replace('question:', '')
|
| 340 |
+
Question= Question.strip()
|
| 341 |
+
|
| 342 |
+
individual_quest['Question']= Question
|
| 343 |
+
individual_quest['Answer']= val
|
| 344 |
+
individual_quest["id"] = index+1
|
| 345 |
+
individual_quest["context"] = keyword_sent_mapping[val]
|
| 346 |
+
|
| 347 |
+
output_array["questions"].append(individual_quest)
|
| 348 |
+
|
| 349 |
+
return output_array
|
| 350 |
+
|
| 351 |
+
def random_choice():
|
| 352 |
+
a = random.choice([0,1])
|
| 353 |
+
return bool(a)
|
| 354 |
+
|
| 355 |
+
class QGen:
|
| 356 |
+
|
| 357 |
+
def __init__(self):
|
| 358 |
+
|
| 359 |
+
self.tokenizer = T5Tokenizer.from_pretrained('t5-large')
|
| 360 |
+
model = T5ForConditionalGeneration.from_pretrained('Parth/result')
|
| 361 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 362 |
+
model.to(device)
|
| 363 |
+
# model.eval()
|
| 364 |
+
self.device = device
|
| 365 |
+
self.model = model
|
| 366 |
+
self.nlp = spacy.load('en_core_web_sm')
|
| 367 |
+
|
| 368 |
+
self.s2v = Sense2Vec().from_disk('s2v_old')
|
| 369 |
+
|
| 370 |
+
self.fdist = FreqDist(brown.words())
|
| 371 |
+
self.normalized_levenshtein = NormalizedLevenshtein()
|
| 372 |
+
self.set_seed(42)
|
| 373 |
+
|
| 374 |
+
def set_seed(self,seed):
|
| 375 |
+
numpy.random.seed(seed)
|
| 376 |
+
torch.manual_seed(seed)
|
| 377 |
+
if torch.cuda.is_available():
|
| 378 |
+
torch.cuda.manual_seed_all(seed)
|
| 379 |
+
|
| 380 |
+
def predict_mcq(self, payload):
|
| 381 |
+
start = time.time()
|
| 382 |
+
inp = {
|
| 383 |
+
"input_text": payload.get("input_text"),
|
| 384 |
+
"max_questions": payload.get("max_questions", 4)
|
| 385 |
+
}
|
| 386 |
+
|
| 387 |
+
text = inp['input_text']
|
| 388 |
+
sentences = tokenize_sentences(text)
|
| 389 |
+
joiner = " "
|
| 390 |
+
modified_text = joiner.join(sentences)
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
keywords = get_keywords(self.nlp,modified_text,inp['max_questions'],self.s2v,self.fdist,self.normalized_levenshtein,len(sentences) )
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
keyword_sentence_mapping = get_sentences_for_keyword(keywords, sentences)
|
| 397 |
+
|
| 398 |
+
for k in keyword_sentence_mapping.keys():
|
| 399 |
+
text_snippet = " ".join(keyword_sentence_mapping[k][:3])
|
| 400 |
+
keyword_sentence_mapping[k] = text_snippet
|
| 401 |
+
|
| 402 |
+
|
| 403 |
+
final_output = {}
|
| 404 |
+
|
| 405 |
+
if len(keyword_sentence_mapping.keys()) == 0:
|
| 406 |
+
return final_output
|
| 407 |
+
else:
|
| 408 |
+
try:
|
| 409 |
+
generated_questions = generate_questions_mcq(keyword_sentence_mapping,self.device,self.tokenizer,self.model,self.s2v,self.normalized_levenshtein)
|
| 410 |
+
|
| 411 |
+
except:
|
| 412 |
+
return final_output
|
| 413 |
+
end = time.time()
|
| 414 |
+
|
| 415 |
+
final_output["statement"] = modified_text
|
| 416 |
+
final_output["questions"] = generated_questions["questions"]
|
| 417 |
+
final_output["time_taken"] = end-start
|
| 418 |
+
|
| 419 |
+
if torch.device=='cuda':
|
| 420 |
+
torch.cuda.empty_cache()
|
| 421 |
+
|
| 422 |
+
return final_output
|
| 423 |
+
|
| 424 |
+
def predict_shortq(self, payload):
|
| 425 |
+
inp = {
|
| 426 |
+
"input_text": payload.get("input_text"),
|
| 427 |
+
"max_questions": payload.get("max_questions", 4)
|
| 428 |
+
}
|
| 429 |
+
|
| 430 |
+
text = inp['input_text']
|
| 431 |
+
sentences = tokenize_sentences(text)
|
| 432 |
+
joiner = " "
|
| 433 |
+
modified_text = joiner.join(sentences)
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
keywords = get_keywords(self.nlp,modified_text,inp['max_questions'],self.s2v,self.fdist,self.normalized_levenshtein,len(sentences) )
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
keyword_sentence_mapping = get_sentences_for_keyword(keywords, sentences)
|
| 440 |
+
|
| 441 |
+
for k in keyword_sentence_mapping.keys():
|
| 442 |
+
text_snippet = " ".join(keyword_sentence_mapping[k][:3])
|
| 443 |
+
keyword_sentence_mapping[k] = text_snippet
|
| 444 |
+
|
| 445 |
+
final_output = {}
|
| 446 |
+
|
| 447 |
+
if len(keyword_sentence_mapping.keys()) == 0:
|
| 448 |
+
print('ZERO')
|
| 449 |
+
return final_output
|
| 450 |
+
else:
|
| 451 |
+
|
| 452 |
+
generated_questions = generate_normal_questions(keyword_sentence_mapping,self.device,self.tokenizer,self.model)
|
| 453 |
+
print(generated_questions)
|
| 454 |
+
|
| 455 |
+
|
| 456 |
+
final_output["statement"] = modified_text
|
| 457 |
+
final_output["questions"] = generated_questions["questions"]
|
| 458 |
+
|
| 459 |
+
if torch.device=='cuda':
|
| 460 |
+
torch.cuda.empty_cache()
|
| 461 |
+
|
| 462 |
+
return final_output
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
def paraphrase(self,payload):
|
| 466 |
+
start = time.time()
|
| 467 |
+
inp = {
|
| 468 |
+
"input_text": payload.get("input_text"),
|
| 469 |
+
"max_questions": payload.get("max_questions", 3)
|
| 470 |
+
}
|
| 471 |
+
|
| 472 |
+
text = inp['input_text']
|
| 473 |
+
num = inp['max_questions']
|
| 474 |
+
|
| 475 |
+
self.sentence= text
|
| 476 |
+
self.text= "paraphrase: " + self.sentence + " </s>"
|
| 477 |
+
|
| 478 |
+
encoding = self.tokenizer.encode_plus(self.text,pad_to_max_length=True, return_tensors="pt")
|
| 479 |
+
input_ids, attention_masks = encoding["input_ids"].to(self.device), encoding["attention_mask"].to(self.device)
|
| 480 |
+
|
| 481 |
+
beam_outputs = self.model.generate(
|
| 482 |
+
input_ids=input_ids,
|
| 483 |
+
attention_mask=attention_masks,
|
| 484 |
+
max_length= 50,
|
| 485 |
+
num_beams=50,
|
| 486 |
+
num_return_sequences=num,
|
| 487 |
+
no_repeat_ngram_size=2,
|
| 488 |
+
early_stopping=True
|
| 489 |
+
)
|
| 490 |
+
|
| 491 |
+
# print ("\nOriginal Question ::")
|
| 492 |
+
# print (text)
|
| 493 |
+
# print ("\n")
|
| 494 |
+
# print ("Paraphrased Questions :: ")
|
| 495 |
+
final_outputs =[]
|
| 496 |
+
for beam_output in beam_outputs:
|
| 497 |
+
sent = self.tokenizer.decode(beam_output, skip_special_tokens=True,clean_up_tokenization_spaces=True)
|
| 498 |
+
if sent.lower() != self.sentence.lower() and sent not in final_outputs:
|
| 499 |
+
final_outputs.append(sent)
|
| 500 |
+
|
| 501 |
+
output= {}
|
| 502 |
+
output['Question']= text
|
| 503 |
+
output['Count']= num
|
| 504 |
+
output['Paraphrased Questions']= final_outputs
|
| 505 |
+
|
| 506 |
+
for i, final_output in enumerate(final_outputs):
|
| 507 |
+
print("{}: {}".format(i, final_output))
|
| 508 |
+
|
| 509 |
+
if torch.device=='cuda':
|
| 510 |
+
torch.cuda.empty_cache()
|
| 511 |
+
|
| 512 |
+
return output
|
| 513 |
+
|
| 514 |
+
|
| 515 |
+
class BoolQGen:
|
| 516 |
+
|
| 517 |
+
def __init__(self):
|
| 518 |
+
self.tokenizer = T5Tokenizer.from_pretrained('t5-base')
|
| 519 |
+
model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_boolean_questions')
|
| 520 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 521 |
+
model.to(device)
|
| 522 |
+
# model.eval()
|
| 523 |
+
self.device = device
|
| 524 |
+
self.model = model
|
| 525 |
+
self.set_seed(42)
|
| 526 |
+
|
| 527 |
+
def set_seed(self,seed):
|
| 528 |
+
numpy.random.seed(seed)
|
| 529 |
+
torch.manual_seed(seed)
|
| 530 |
+
if torch.cuda.is_available():
|
| 531 |
+
torch.cuda.manual_seed_all(seed)
|
| 532 |
+
|
| 533 |
+
def random_choice(self):
|
| 534 |
+
a = random.choice([0,1])
|
| 535 |
+
return bool(a)
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
def predict_boolq(self,payload):
|
| 539 |
+
start = time.time()
|
| 540 |
+
inp = {
|
| 541 |
+
"input_text": payload.get("input_text"),
|
| 542 |
+
"max_questions": payload.get("max_questions", 4)
|
| 543 |
+
}
|
| 544 |
+
|
| 545 |
+
text = inp['input_text']
|
| 546 |
+
num= inp['max_questions']
|
| 547 |
+
sentences = tokenize_sentences(text)
|
| 548 |
+
joiner = " "
|
| 549 |
+
modified_text = joiner.join(sentences)
|
| 550 |
+
answer = self.random_choice()
|
| 551 |
+
form = "truefalse: %s passage: %s </s>" % (modified_text, answer)
|
| 552 |
+
|
| 553 |
+
encoding = self.tokenizer.encode_plus(form, return_tensors="pt")
|
| 554 |
+
input_ids, attention_masks = encoding["input_ids"].to(self.device), encoding["attention_mask"].to(self.device)
|
| 555 |
+
|
| 556 |
+
output = beam_search_decoding(input_ids, attention_masks,self.model,self.tokenizer)
|
| 557 |
+
if torch.device=='cuda':
|
| 558 |
+
torch.cuda.empty_cache()
|
| 559 |
+
|
| 560 |
+
final= {}
|
| 561 |
+
final['Text']= text
|
| 562 |
+
final['Count']= num
|
| 563 |
+
final['Boolean Questions']= output
|
| 564 |
+
|
| 565 |
+
return final
|
| 566 |
+
|
| 567 |
+
class AnswerPredictor:
|
| 568 |
+
|
| 569 |
+
def __init__(self):
|
| 570 |
+
self.tokenizer = T5Tokenizer.from_pretrained('t5-large', model_max_length=512)
|
| 571 |
+
model = T5ForConditionalGeneration.from_pretrained('Parth/boolean')
|
| 572 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 573 |
+
model.to(device)
|
| 574 |
+
# model.eval()
|
| 575 |
+
self.device = device
|
| 576 |
+
self.model = model
|
| 577 |
+
self.set_seed(42)
|
| 578 |
+
|
| 579 |
+
def set_seed(self,seed):
|
| 580 |
+
numpy.random.seed(seed)
|
| 581 |
+
torch.manual_seed(seed)
|
| 582 |
+
if torch.cuda.is_available():
|
| 583 |
+
torch.cuda.manual_seed_all(seed)
|
| 584 |
+
|
| 585 |
+
def greedy_decoding (inp_ids,attn_mask,model,tokenizer):
|
| 586 |
+
greedy_output = model.generate(input_ids=inp_ids, attention_mask=attn_mask, max_length=256)
|
| 587 |
+
Question = tokenizer.decode(greedy_output[0], skip_special_tokens=True,clean_up_tokenization_spaces=True)
|
| 588 |
+
return Question.strip().capitalize()
|
| 589 |
+
|
| 590 |
+
def predict_answer(self,payload):
|
| 591 |
+
answers = []
|
| 592 |
+
inp = {
|
| 593 |
+
"input_text": payload.get("input_text"),
|
| 594 |
+
"input_question" : payload.get("input_question")
|
| 595 |
+
}
|
| 596 |
+
for ques in payload.get("input_question"):
|
| 597 |
+
|
| 598 |
+
context = inp["input_text"]
|
| 599 |
+
question = ques
|
| 600 |
+
input = "question: %s <s> context: %s </s>" % (question,context)
|
| 601 |
+
|
| 602 |
+
encoding = self.tokenizer.encode_plus(input, return_tensors="pt")
|
| 603 |
+
input_ids, attention_masks = encoding["input_ids"].to(self.device), encoding["attention_mask"].to(self.device)
|
| 604 |
+
greedy_output = self.model.generate(input_ids=input_ids, attention_mask=attention_masks, max_length=256)
|
| 605 |
+
Question = self.tokenizer.decode(greedy_output[0], skip_special_tokens=True,clean_up_tokenization_spaces=True)
|
| 606 |
+
answers.append(Question.strip().capitalize())
|
| 607 |
+
|
| 608 |
+
return answers
|
b/b.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import subprocess
|
| 2 |
+
cmd = ["python", "-m", "spacy", "download", "en_core_web_sm"]
|
| 3 |
+
subprocess.run(cmd)
|
m2.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from pprint import pprint
|
| 4 |
+
import subprocess
|
| 5 |
+
cmd = ["python", "-m", "spacy", "download", "en_core_web_sm"]
|
| 6 |
+
subprocess.run(cmd)
|
| 7 |
+
from spacy.cli import download
|
| 8 |
+
from Questgen import main
|
| 9 |
+
from PyPDF2 import PdfReader
|
| 10 |
+
from transformers import pipeline
|
| 11 |
+
from PyPDF2 import PdfReader
|
| 12 |
+
import nltk
|
| 13 |
+
import pandas as pd
|
| 14 |
+
nltk.download('punkt')
|
| 15 |
+
# st.title(body='7 - Question Generation')
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def get_pdf_text(pdf_docs):
|
| 19 |
+
text = ""
|
| 20 |
+
for pdf in pdf_docs:
|
| 21 |
+
pdf_reader = PdfReader(pdf)
|
| 22 |
+
for page in pdf_reader.pages:
|
| 23 |
+
text += page.extract_text()
|
| 24 |
+
return text
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
########################################################
|
| 28 |
+
# st.header(body='Proposition 1',divider='red')
|
| 29 |
+
|
| 30 |
+
# if st.toggle(label='Show Proposition 1'):
|
| 31 |
+
st.title('Generate Questions from PDFs')
|
| 32 |
+
file = st.file_uploader(label='Upload',accept_multiple_files=True)
|
| 33 |
+
pr = st.button(label='Process')
|
| 34 |
+
if pr:
|
| 35 |
+
# pr = st.button(label='Process')
|
| 36 |
+
raw_text = get_pdf_text(file)
|
| 37 |
+
# questions = []
|
| 38 |
+
ge = main.QGen()
|
| 39 |
+
payload = {
|
| 40 |
+
'input_text' : raw_text,
|
| 41 |
+
# 'max_questions':2,
|
| 42 |
+
}
|
| 43 |
+
output = ge.predict_mcq(payload=payload)
|
| 44 |
+
st.header(body='*Generated Questions are:*', divider='orange')
|
| 45 |
+
for question in output['questions']:
|
| 46 |
+
st.subheader(body=f":orange[Q{question['id']}:] {question['question_statement']}", divider='blue')
|
| 47 |
+
st.markdown(f"A: {question['answer']}")
|
| 48 |
+
c = 0
|
| 49 |
+
for option in question['options']:
|
| 50 |
+
# st.markdown(f"{c}")
|
| 51 |
+
c+=1
|
| 52 |
+
if c==1:
|
| 53 |
+
st.markdown(f"B: {option}")
|
| 54 |
+
elif c==2:
|
| 55 |
+
st.markdown(f"C: {option}")
|
| 56 |
+
elif c==3:
|
| 57 |
+
st.markdown(f"D: {option}")
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
if output is not None:
|
| 61 |
+
# Convert the dictionary to a DataFrame
|
| 62 |
+
df = pd.DataFrame(output['questions'])
|
| 63 |
+
|
| 64 |
+
# Convert the options from lists to strings
|
| 65 |
+
# df['options'] = df['options'].apply(lambda x: ','.join(x))
|
| 66 |
+
df = df.drop(labels=['options_algorithm','extra_options','context','question_type'],axis=1)
|
| 67 |
+
# Convert the DataFrame to CSV
|
| 68 |
+
csv = df.to_csv(index=False).encode('utf-8')
|
| 69 |
+
st.download_button(
|
| 70 |
+
label='Download Data',
|
| 71 |
+
data=csv,
|
| 72 |
+
file_name='Generated MCQs.csv',
|
| 73 |
+
mime='text/csv'
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
if st.toggle(label='Show Raw Output'):
|
| 77 |
+
st.write(output)
|
s2v_old/._cfg
ADDED
|
Binary file (174 Bytes). View file
|
|
|
s2v_old/._freqs.json
ADDED
|
Binary file (174 Bytes). View file
|
|
|
s2v_old/._key2row
ADDED
|
Binary file (174 Bytes). View file
|
|
|
s2v_old/._strings.json
ADDED
|
Binary file (174 Bytes). View file
|
|
|
s2v_old/._vectors
ADDED
|
Binary file (174 Bytes). View file
|
|
|
s2v_old/cfg
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"senses":[
|
| 3 |
+
"PUNCT",
|
| 4 |
+
"SYM",
|
| 5 |
+
"MONEY",
|
| 6 |
+
"PERCENT",
|
| 7 |
+
"PRODUCT",
|
| 8 |
+
"X",
|
| 9 |
+
"LANGUAGE",
|
| 10 |
+
"DET",
|
| 11 |
+
"LOC",
|
| 12 |
+
"CARDINAL",
|
| 13 |
+
"CONJ",
|
| 14 |
+
"LAW",
|
| 15 |
+
"ORG",
|
| 16 |
+
"PART",
|
| 17 |
+
"VERB",
|
| 18 |
+
"NUM",
|
| 19 |
+
"EVENT",
|
| 20 |
+
"ADP",
|
| 21 |
+
"PERSON",
|
| 22 |
+
"QUANTITY",
|
| 23 |
+
"INTJ",
|
| 24 |
+
"TIME",
|
| 25 |
+
"SPACE",
|
| 26 |
+
"DATE",
|
| 27 |
+
"ADJ",
|
| 28 |
+
"NOUN",
|
| 29 |
+
"NORP",
|
| 30 |
+
"ORDINAL",
|
| 31 |
+
"WORK OF ART",
|
| 32 |
+
"ADV",
|
| 33 |
+
"FAC",
|
| 34 |
+
"GPE"
|
| 35 |
+
]
|
| 36 |
+
}
|
s2v_old/freqs.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fb75f4bbf927c536d808426c6e9f55ef1f69ab44e473c460b8e13274eab97241
|
| 3 |
+
size 49969681
|
s2v_old/key2row
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:29690c5ab1c96b6f9061b25bf737fee04540187328a3857cea0f9a1b4da46614
|
| 3 |
+
size 16492891
|
s2v_old/strings.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f1ecd6b643475b42d153c74515cba54c12e28e1edac8abbd51794a6ca4a105e0
|
| 3 |
+
size 26188439
|
s2v_old/vectors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:290724e713d3e8da2ed0f82ab2ad1a1aeaa9d5fe1330baccd26b62a7399f6d71
|
| 3 |
+
size 611973760
|