|
|
|
|
|
from huggingface_hub import InferenceClient |
|
|
import os |
|
|
import json |
|
|
import requests |
|
|
import boto3 |
|
|
import streamlit as st |
|
|
from dotenv import load_dotenv |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
|
OPENWEATHERMAP_API_KEY = os.getenv("OPENWEATHERMAP_API_KEY") |
|
|
AWS_REGION = os.getenv("AWS_REGION", "us-east-1") |
|
|
|
|
|
|
|
|
bedrock = boto3.client("bedrock-runtime", region_name=AWS_REGION) |
|
|
|
|
|
|
|
|
st.title("Weather Assistant - Umbrella Advisor") |
|
|
st.markdown("Ask me if you should carry an umbrella tomorrow!") |
|
|
|
|
|
|
|
|
if "messages" not in st.session_state: |
|
|
st.session_state.messages = [] |
|
|
|
|
|
|
|
|
for msg in st.session_state.messages: |
|
|
with st.chat_message(msg["role"]): |
|
|
st.markdown(msg["content"]) |
|
|
|
|
|
|
|
|
def get_weather(location): |
|
|
"""Get weather forecast for a specific location""" |
|
|
print(f"Getting weather for: {location}") |
|
|
|
|
|
|
|
|
if not location or location.strip() == "": |
|
|
return {"error": "Please specify a valid location/city name."} |
|
|
|
|
|
location = location.strip() |
|
|
geo_url = f"http://api.openweathermap.org/geo/1.0/direct?q={location}&limit=1&appid={OPENWEATHERMAP_API_KEY}" |
|
|
|
|
|
try: |
|
|
geo_resp = requests.get(geo_url).json() |
|
|
|
|
|
if not geo_resp or len(geo_resp) == 0: |
|
|
return {"error": f"Location '{location}' not found. Please check the spelling and try again."} |
|
|
|
|
|
lat, lon = geo_resp[0]['lat'], geo_resp[0]['lon'] |
|
|
except (KeyError, IndexError, requests.RequestException) as e: |
|
|
return {"error": f"Error getting location data for '{location}': {str(e)}"} |
|
|
try: |
|
|
weather_url = f"http://api.openweathermap.org/data/2.5/forecast?lat={lat}&lon={lon}&appid={OPENWEATHERMAP_API_KEY}&units=metric" |
|
|
weather_data = requests.get(weather_url).json() |
|
|
|
|
|
if 'list' not in weather_data: |
|
|
return {"error": f"Unable to get weather forecast for '{location}'."} |
|
|
|
|
|
forecast = [] |
|
|
for f in weather_data['list'][:8]: |
|
|
forecast.append({ |
|
|
"time": f["dt_txt"], |
|
|
"description": f["weather"][0]["description"], |
|
|
"rain_probability": f.get("pop", 0) * 100, |
|
|
"temp": f["main"]["temp"], |
|
|
"humidity": f["main"]["humidity"] |
|
|
}) |
|
|
|
|
|
return { |
|
|
"location": location, |
|
|
"forecast": forecast |
|
|
} |
|
|
except (KeyError, requests.RequestException) as e: |
|
|
return {"error": f"Error getting weather forecast for '{location}': {str(e)}"} |
|
|
|
|
|
|
|
|
def generate_react_response(user_input, conversation_history=""): |
|
|
"""Generate response using ReAct (Reasoning + Acting) approach""" |
|
|
|
|
|
system_prompt = """You are a helpful weather assistant that uses ReAct (Reasoning + Acting) methodology to help users decide about carrying umbrellas. |
|
|
|
|
|
Follow this process: |
|
|
1. **Think**: Analyze what the user is asking |
|
|
2. **Act**: Use available tools if needed |
|
|
3. **Observe**: Process the results |
|
|
4. **Reason**: Draw conclusions and provide advice |
|
|
|
|
|
Available tools: |
|
|
- get_weather(location): Gets weather forecast for tomorrow |
|
|
|
|
|
When you need to get weather data, respond with this JSON format: |
|
|
{ |
|
|
"thought": "I need to get weather data for [location] to advise about umbrella", |
|
|
"action": "get_weather", |
|
|
"action_input": {"location": "city_name"} |
|
|
} |
|
|
|
|
|
When you have all needed information, provide a conversational response that includes: |
|
|
- The location |
|
|
- Your reasoning based on weather conditions |
|
|
- Clear umbrella advice |
|
|
|
|
|
Example: "You do not need to carry an umbrella tomorrow as the weather in New York will be sunny with no chance of rain." |
|
|
|
|
|
If the user doesn't specify a location, ask them to specify it conversationally.""" |
|
|
|
|
|
|
|
|
messages = [ |
|
|
{"role": "user", "content": f"{system_prompt}\n\nConversation history: {conversation_history}\n\nUser: {user_input}"} |
|
|
] |
|
|
|
|
|
claude_body = { |
|
|
"anthropic_version": "bedrock-2023-05-31", |
|
|
"max_tokens": 1000, |
|
|
"temperature": 0.7, |
|
|
"top_p": 0.9, |
|
|
"messages": messages |
|
|
} |
|
|
|
|
|
response = bedrock.invoke_model( |
|
|
modelId="anthropic.claude-3-sonnet-20240229-v1:0", |
|
|
contentType="application/json", |
|
|
accept="application/json", |
|
|
body=json.dumps(claude_body), |
|
|
) |
|
|
|
|
|
content = json.loads(response["body"].read())["content"][0]["text"].strip() |
|
|
|
|
|
|
|
|
try: |
|
|
react_response = json.loads(content) |
|
|
|
|
|
if react_response.get("action") == "get_weather": |
|
|
location = react_response.get("action_input", {}).get("location", "").strip() |
|
|
thought = react_response.get("thought", "") |
|
|
|
|
|
|
|
|
if not location: |
|
|
return "I need to know which city or location you're asking about. Could you please specify the location?" |
|
|
|
|
|
|
|
|
weather_data = get_weather(location) |
|
|
|
|
|
if "error" in weather_data: |
|
|
return weather_data["error"] |
|
|
|
|
|
|
|
|
try: |
|
|
reasoning_prompt = f"""Based on this weather data for {location}, provide your final umbrella recommendation: |
|
|
|
|
|
Weather forecast: {json.dumps(weather_data, indent=2)} |
|
|
|
|
|
Your previous thought: {thought} |
|
|
|
|
|
Provide a conversational response that includes: |
|
|
1. The location |
|
|
2. Your reasoning based on the weather conditions |
|
|
3. Clear umbrella advice |
|
|
|
|
|
Format like: "You [do/do not] need to carry an umbrella tomorrow as the weather in [location] will be [conditions and reasoning]." |
|
|
""" |
|
|
|
|
|
final_messages = [{"role": "user", "content": reasoning_prompt}] |
|
|
|
|
|
final_body = { |
|
|
"anthropic_version": "bedrock-2023-05-31", |
|
|
"max_tokens": 500, |
|
|
"temperature": 0.7, |
|
|
"messages": final_messages |
|
|
} |
|
|
|
|
|
final_response = bedrock.invoke_model( |
|
|
modelId="anthropic.claude-3-sonnet-20240229-v1:0", |
|
|
contentType="application/json", |
|
|
accept="application/json", |
|
|
body=json.dumps(final_body), |
|
|
) |
|
|
|
|
|
final_content = json.loads(final_response["body"].read())["content"][0]["text"].strip() |
|
|
return final_content |
|
|
except Exception as e: |
|
|
return f"Error processing weather data: {str(e)}" |
|
|
|
|
|
except json.JSONDecodeError: |
|
|
|
|
|
pass |
|
|
|
|
|
return content |
|
|
|
|
|
|
|
|
def build_conversation_history(): |
|
|
"""Build conversation history for context""" |
|
|
history = [] |
|
|
for msg in st.session_state.messages[-4:]: |
|
|
history.append(f"{msg['role'].capitalize()}: {msg['content']}") |
|
|
return "\n".join(history) |
|
|
|
|
|
|
|
|
if prompt := st.chat_input("Type your question here..."): |
|
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
|
with st.chat_message("user"): |
|
|
st.markdown(prompt) |
|
|
|
|
|
with st.chat_message("assistant"): |
|
|
with st.spinner("Thinking..."): |
|
|
conversation_history = build_conversation_history() |
|
|
reply = generate_react_response(prompt, conversation_history) |
|
|
st.markdown(reply) |
|
|
st.session_state.messages.append({"role": "assistant", "content": reply}) |
|
|
|
|
|
|
|
|
with st.sidebar: |
|
|
st.header("About") |
|
|
st.markdown(""" |
|
|
- Powered by **AWS Bedrock (Claude Sonnet)** |
|
|
- Uses **ReAct (Reasoning + Acting)** methodology |
|
|
- Retrieves real-time data from **OpenWeatherMap** |
|
|
- Provides step-by-step reasoning for umbrella advice |
|
|
""") |
|
|
|
|
|
st.subheader("Sample Prompts") |
|
|
st.markdown(""" |
|
|
- Should I bring an umbrella tomorrow? |
|
|
- Will it rain in Delhi tomorrow? |
|
|
- Do I need an umbrella in Tokyo? |
|
|
- Should I carry an umbrella tomorrow in London? |
|
|
""") |
|
|
|
|
|
st.subheader("ReAct Process") |
|
|
st.markdown(""" |
|
|
1. **Think**: Analyze your question |
|
|
2. **Act**: Get weather data if needed |
|
|
3. **Observe**: Process weather information |
|
|
4. **Reason**: Provide umbrella advice with explanation |
|
|
""") |
|
|
|
|
|
|
|
|
|
|
|
|