Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,6 +4,9 @@ import seaborn as sns
|
|
| 4 |
import gradio as gr
|
| 5 |
import requests
|
| 6 |
from bs4 import BeautifulSoup
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Input data with links to Hugging Face repositories
|
| 9 |
data_full = [
|
|
@@ -52,8 +55,14 @@ def plot_average_scores():
|
|
| 52 |
plt.gca().invert_yaxis()
|
| 53 |
plt.grid(axis='x', linestyle='--', alpha=0.7)
|
| 54 |
plt.tight_layout()
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
def plot_task_performance():
|
| 59 |
df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], var_name="Task", value_name="Score")
|
|
@@ -70,8 +79,13 @@ def plot_task_performance():
|
|
| 70 |
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
|
| 71 |
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
| 72 |
plt.tight_layout()
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
def plot_task_specific_top_models():
|
| 77 |
top_models = df_full.iloc[:, 2:].idxmax()
|
|
@@ -86,8 +100,13 @@ def plot_task_specific_top_models():
|
|
| 86 |
plt.ylabel("Score", fontsize=14)
|
| 87 |
plt.grid(axis="y", linestyle="--", alpha=0.7)
|
| 88 |
plt.tight_layout()
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
def scrape_mergekit_config(model_name):
|
| 93 |
"""
|
|
@@ -109,8 +128,62 @@ def plot_heatmap():
|
|
| 109 |
sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu", xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
|
| 110 |
plt.title("Performance Heatmap", fontsize=16)
|
| 111 |
plt.tight_layout()
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
# Gradio app
|
| 116 |
with gr.Blocks() as demo:
|
|
@@ -118,28 +191,44 @@ with gr.Blocks() as demo:
|
|
| 118 |
|
| 119 |
with gr.Row():
|
| 120 |
btn1 = gr.Button("Show Average Performance")
|
| 121 |
-
img1 = gr.Image(type="
|
| 122 |
-
|
| 123 |
-
|
|
|
|
| 124 |
with gr.Row():
|
| 125 |
btn2 = gr.Button("Show Task Performance")
|
| 126 |
-
img2 = gr.Image(type="
|
| 127 |
-
|
|
|
|
| 128 |
|
| 129 |
with gr.Row():
|
| 130 |
btn3 = gr.Button("Task-Specific Top Models")
|
| 131 |
-
img3 = gr.Image(type="
|
| 132 |
-
|
| 133 |
-
|
|
|
|
| 134 |
with gr.Row():
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
|
|
|
| 138 |
|
| 139 |
with gr.Row():
|
| 140 |
model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
-
demo.launch()
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import requests
|
| 6 |
from bs4 import BeautifulSoup
|
| 7 |
+
import io
|
| 8 |
+
import os
|
| 9 |
+
import base64
|
| 10 |
|
| 11 |
# Input data with links to Hugging Face repositories
|
| 12 |
data_full = [
|
|
|
|
| 55 |
plt.gca().invert_yaxis()
|
| 56 |
plt.grid(axis='x', linestyle='--', alpha=0.7)
|
| 57 |
plt.tight_layout()
|
| 58 |
+
|
| 59 |
+
img_buffer = io.BytesIO()
|
| 60 |
+
plt.savefig(img_buffer, format='png')
|
| 61 |
+
img_buffer.seek(0)
|
| 62 |
+
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
| 63 |
+
plt.close()
|
| 64 |
+
return img_base64, "average_performance.png"
|
| 65 |
+
|
| 66 |
|
| 67 |
def plot_task_performance():
|
| 68 |
df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], var_name="Task", value_name="Score")
|
|
|
|
| 79 |
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
|
| 80 |
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
| 81 |
plt.tight_layout()
|
| 82 |
+
|
| 83 |
+
img_buffer = io.BytesIO()
|
| 84 |
+
plt.savefig(img_buffer, format='png')
|
| 85 |
+
img_buffer.seek(0)
|
| 86 |
+
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
| 87 |
+
plt.close()
|
| 88 |
+
return img_base64, "task_performance.png"
|
| 89 |
|
| 90 |
def plot_task_specific_top_models():
|
| 91 |
top_models = df_full.iloc[:, 2:].idxmax()
|
|
|
|
| 100 |
plt.ylabel("Score", fontsize=14)
|
| 101 |
plt.grid(axis="y", linestyle="--", alpha=0.7)
|
| 102 |
plt.tight_layout()
|
| 103 |
+
|
| 104 |
+
img_buffer = io.BytesIO()
|
| 105 |
+
plt.savefig(img_buffer, format='png')
|
| 106 |
+
img_buffer.seek(0)
|
| 107 |
+
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
| 108 |
+
plt.close()
|
| 109 |
+
return img_base64, "task_specific_top_models.png"
|
| 110 |
|
| 111 |
def scrape_mergekit_config(model_name):
|
| 112 |
"""
|
|
|
|
| 128 |
sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu", xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
|
| 129 |
plt.title("Performance Heatmap", fontsize=16)
|
| 130 |
plt.tight_layout()
|
| 131 |
+
|
| 132 |
+
img_buffer = io.BytesIO()
|
| 133 |
+
plt.savefig(img_buffer, format='png')
|
| 134 |
+
img_buffer.seek(0)
|
| 135 |
+
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
|
| 136 |
+
plt.close()
|
| 137 |
+
return img_base64, "performance_heatmap.png"
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def download_yaml(yaml_content, model_name):
|
| 141 |
+
"""
|
| 142 |
+
Generates a downloadable link for the scraped YAML content.
|
| 143 |
+
"""
|
| 144 |
+
if "No YAML configuration found" in yaml_content or "Failed to fetch model page" in yaml_content:
|
| 145 |
+
return None # Do not return a link if there's no config or a fetch error
|
| 146 |
+
|
| 147 |
+
filename = f"{model_name.replace('/', '_')}_config.yaml"
|
| 148 |
+
return gr.File(value=yaml_content.encode(), filename=filename)
|
| 149 |
+
|
| 150 |
+
def download_all_data():
|
| 151 |
+
# Prepare data to download
|
| 152 |
+
csv_buffer = io.StringIO()
|
| 153 |
+
df_full.to_csv(csv_buffer, index=False)
|
| 154 |
+
csv_data = csv_buffer.getvalue().encode('utf-8')
|
| 155 |
+
|
| 156 |
+
# Prepare all plots
|
| 157 |
+
average_plot_b64, average_plot_name = plot_average_scores()
|
| 158 |
+
task_plot_b64, task_plot_name = plot_task_performance()
|
| 159 |
+
top_models_plot_b64, top_models_plot_name = plot_task_specific_top_models()
|
| 160 |
+
heatmap_plot_b64, heatmap_plot_name = plot_heatmap()
|
| 161 |
+
|
| 162 |
+
plot_dict = {
|
| 163 |
+
"average_performance": (average_plot_b64, average_plot_name),
|
| 164 |
+
"task_performance": (task_plot_b64, task_plot_name),
|
| 165 |
+
"top_models": (top_models_plot_b64, top_models_plot_name),
|
| 166 |
+
"heatmap": (heatmap_plot_b64, heatmap_plot_name)
|
| 167 |
+
}
|
| 168 |
+
|
| 169 |
+
zip_buffer = io.BytesIO()
|
| 170 |
+
import zipfile
|
| 171 |
+
with zipfile.ZipFile(zip_buffer, 'w') as zf:
|
| 172 |
+
zf.writestr("model_scores.csv", csv_data)
|
| 173 |
+
|
| 174 |
+
for name, (b64, filename) in plot_dict.items():
|
| 175 |
+
img_data = base64.b64decode(b64)
|
| 176 |
+
zf.writestr(filename, img_data)
|
| 177 |
+
|
| 178 |
+
for model_name in df_full["Model Configuration"].to_list():
|
| 179 |
+
yaml_content = scrape_mergekit_config(model_name)
|
| 180 |
+
if "No YAML configuration found" not in yaml_content and "Failed to fetch model page" not in yaml_content:
|
| 181 |
+
zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode())
|
| 182 |
+
|
| 183 |
+
zip_buffer.seek(0)
|
| 184 |
+
|
| 185 |
+
return zip_buffer, "analysis_data.zip"
|
| 186 |
+
|
| 187 |
|
| 188 |
# Gradio app
|
| 189 |
with gr.Blocks() as demo:
|
|
|
|
| 191 |
|
| 192 |
with gr.Row():
|
| 193 |
btn1 = gr.Button("Show Average Performance")
|
| 194 |
+
img1 = gr.Image(type="bytes", label="Average Performance Plot")
|
| 195 |
+
img1_download = gr.File(label="Download Average Performance")
|
| 196 |
+
btn1.click(plot_average_scores, outputs=[img1,img1_download])
|
| 197 |
+
|
| 198 |
with gr.Row():
|
| 199 |
btn2 = gr.Button("Show Task Performance")
|
| 200 |
+
img2 = gr.Image(type="bytes", label="Task Performance Plot")
|
| 201 |
+
img2_download = gr.File(label="Download Task Performance")
|
| 202 |
+
btn2.click(plot_task_performance, outputs=[img2, img2_download])
|
| 203 |
|
| 204 |
with gr.Row():
|
| 205 |
btn3 = gr.Button("Task-Specific Top Models")
|
| 206 |
+
img3 = gr.Image(type="bytes", label="Task-Specific Top Models Plot")
|
| 207 |
+
img3_download = gr.File(label="Download Top Models")
|
| 208 |
+
btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
|
| 209 |
+
|
| 210 |
with gr.Row():
|
| 211 |
+
btn4 = gr.Button("Plot Performance Heatmap")
|
| 212 |
+
heatmap_img = gr.Image(type="bytes", label="Performance Heatmap")
|
| 213 |
+
heatmap_download = gr.File(label="Download Heatmap")
|
| 214 |
+
btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
|
| 215 |
|
| 216 |
with gr.Row():
|
| 217 |
model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
|
| 218 |
+
with gr.Column():
|
| 219 |
+
scrape_btn = gr.Button("Scrape MergeKit Configuration")
|
| 220 |
+
yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.")
|
| 221 |
+
scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output)
|
| 222 |
+
with gr.Column():
|
| 223 |
+
save_yaml_btn = gr.Button("Save MergeKit Configuration")
|
| 224 |
+
yaml_download = gr.File(label="Download MergeKit Configuration")
|
| 225 |
+
save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download)
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
with gr.Row():
|
| 229 |
+
download_all_btn = gr.Button("Download Everything")
|
| 230 |
+
all_downloads = gr.File(label="Download All Data")
|
| 231 |
+
download_all_btn.click(download_all_data, outputs=all_downloads)
|
| 232 |
+
|
| 233 |
|
| 234 |
+
demo.launch()
|