CultriX's picture
Update app.py
3efb770 verified
raw
history blame
19.8 kB
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import gradio as gr
import requests
from bs4 import BeautifulSoup
import io
import os
import base64
import zipfile
from PIL import Image
from io import BytesIO
import tempfile
import sys
# --------------------------------------------------------------------
# PART 1: YOUR EXISTING (TINY) DATA & PLOTS
# --------------------------------------------------------------------
data_full = [
['CultriX/Qwen2.5-14B-SLERPv7', 'https://huggingface.co/CultriX/Qwen2.5-14B-SLERPv7', 0.7205, 0.8272, 0.7541, 0.6581, 0.5, 0.729],
['djuna/Q2.5-Veltha-14B-0.5', 'https://huggingface.co/djuna/Q2.5-Veltha-14B-0.5', 0.7492, 0.8386, 0.7305, 0.598, 0.43, 0.7817],
['CultriX/Qwen2.5-14B-FinalMerge', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge', 0.7248, 0.8277, 0.7113, 0.7052, 0.57, 0.7001],
['CultriX/Qwen2.5-14B-MultiCultyv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv2', 0.7295, 0.8359, 0.7363, 0.5767, 0.44, 0.7316],
['CultriX/Qwen2.5-14B-Brocav7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav7', 0.7445, 0.8353, 0.7508, 0.6292, 0.46, 0.7629],
['CultriX/Qwen2.5-14B-Broca', 'https://huggingface.co/CultriX/Qwen2.5-14B-Broca', 0.7456, 0.8352, 0.748, 0.6034, 0.44, 0.7716],
['CultriX/Qwen2.5-14B-Brocav3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav3', 0.7395, 0.8388, 0.7393, 0.6405, 0.47, 0.7659],
['CultriX/Qwen2.5-14B-Brocav4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav4', 0.7432, 0.8377, 0.7444, 0.6277, 0.48, 0.758],
['CultriX/Qwen2.5-14B-Brocav2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav2', 0.7492, 0.8302, 0.7508, 0.6377, 0.51, 0.7478],
['CultriX/Qwen2.5-14B-Brocav5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav5', 0.7445, 0.8313, 0.7547, 0.6376, 0.5, 0.7304],
['CultriX/Qwen2.5-14B-Brocav6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav6', 0.7179, 0.8354, 0.7531, 0.6378, 0.49, 0.7524],
['CultriX/Qwenfinity-2.5-14B', 'https://huggingface.co/CultriX/Qwenfinity-2.5-14B', 0.7347, 0.8254, 0.7279, 0.7267, 0.56, 0.697],
['CultriX/Qwen2.5-14B-Emergedv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv2', 0.7137, 0.8335, 0.7363, 0.5836, 0.44, 0.7344],
['CultriX/Qwen2.5-14B-Unity', 'https://huggingface.co/CultriX/Qwen2.5-14B-Unity', 0.7063, 0.8343, 0.7423, 0.682, 0.57, 0.7498],
['CultriX/Qwen2.5-14B-MultiCultyv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv3', 0.7132, 0.8216, 0.7395, 0.6792, 0.55, 0.712],
['CultriX/Qwen2.5-14B-Emergedv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv3', 0.7436, 0.8312, 0.7519, 0.6585, 0.55, 0.7068],
['CultriX/SeQwence-14Bv1', 'https://huggingface.co/CultriX/SeQwence-14Bv1', 0.7278, 0.841, 0.7541, 0.6816, 0.52, 0.7539],
['CultriX/Qwen2.5-14B-Wernickev2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev2', 0.7391, 0.8168, 0.7273, 0.622, 0.45, 0.7572],
['CultriX/Qwen2.5-14B-Wernickev3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev3', 0.7357, 0.8148, 0.7245, 0.7023, 0.55, 0.7869],
['CultriX/Qwen2.5-14B-Wernickev4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev4', 0.7355, 0.829, 0.7497, 0.6306, 0.48, 0.7635],
['CultriX/SeQwential-14B-v1', 'https://huggingface.co/CultriX/SeQwential-14B-v1', 0.7355, 0.8205, 0.7549, 0.6367, 0.48, 0.7626],
['CultriX/Qwen2.5-14B-Wernickev5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev5', 0.7224, 0.8272, 0.7541, 0.679, 0.51, 0.7578],
['CultriX/Qwen2.5-14B-Wernickev6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev6', 0.6994, 0.7549, 0.5816, 0.6991, 0.58, 0.7267],
['CultriX/Qwen2.5-14B-Wernickev7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev7', 0.7147, 0.7599, 0.6097, 0.7056, 0.57, 0.7164],
['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612],
['CultriX/Qwen2.5-14B-BrocaV8', 'https://huggingface.co/CultriX/Qwen2.5-14B-BrocaV8', 0.7415, 0.8396, 0.7334, 0.5785, 0.4300, 0.7646],
]
columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag",
"tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
df_full = pd.DataFrame(data_full, columns=columns)
def plot_average_scores():
df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1)
df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)
plt.figure(figsize=(14, 10))
plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"])
plt.title("Average Performance of Models Across Tasks", fontsize=16)
plt.xlabel("Average Score", fontsize=14)
plt.ylabel("Model Configuration", fontsize=14)
plt.gca().invert_yaxis()
plt.grid(axis='x', linestyle='--', alpha=0.7)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def plot_task_performance():
df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"],
var_name="Task", value_name="Score")
plt.figure(figsize=(16, 12))
for model in df_full["Model Configuration"]:
model_data = df_full_melted[df_full_melted["Model Configuration"] == model]
plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model)
plt.title("Performance of All Models Across Tasks", fontsize=16)
plt.xlabel("Task", fontsize=14)
plt.ylabel("Score", fontsize=14)
plt.xticks(rotation=45)
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def plot_task_specific_top_models():
top_models = df_full.iloc[:, 2:].idxmax()
top_scores = df_full.iloc[:, 2:].max()
results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})
plt.figure(figsize=(14, 8))
plt.bar(results["Task"], results["Score"])
plt.title("Task-Specific Top Models", fontsize=16)
plt.xlabel("Task", fontsize=14)
plt.ylabel("Score", fontsize=14)
plt.grid(axis="y", linestyle="--", alpha=0.7)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def plot_heatmap():
plt.figure(figsize=(14, 10))
sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu",
xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
plt.title("Performance Heatmap", fontsize=16)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def scrape_mergekit_config(model_name):
model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0]
response = requests.get(model_link)
if response.status_code != 200:
return f"Failed to fetch model page for {model_name}. Please check the link."
soup = BeautifulSoup(response.text, "html.parser")
yaml_config = soup.find("pre") # Assume YAML is in <pre> tags
if yaml_config:
return yaml_config.text.strip()
return f"No YAML configuration found for {model_name}."
def download_yaml(yaml_content, model_name):
if "No YAML configuration found" in yaml_content or "Failed to fetch model page" in yaml_content:
return None
filename = f"{model_name.replace('/', '_')}_config.yaml"
return gr.File(value=yaml_content.encode(), filename=filename)
def scrape_model_page(model_url):
try:
response = requests.get(model_url)
if response.status_code != 200:
return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
soup = BeautifulSoup(response.text, "html.parser")
yaml_config = soup.find("pre")
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
metadata_section = soup.find("div", class_="metadata")
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
return f"**YAML Configuration:**\n{yaml_text}\n\n**Metadata:**\n{metadata_text}"
except Exception as e:
return f"Error: {str(e)}"
def display_scraped_model_data(model_url):
return scrape_model_page(model_url)
def download_all_data():
import io
csv_buffer = io.StringIO()
df_full.to_csv(csv_buffer, index=False)
csv_data = csv_buffer.getvalue().encode('utf-8')
average_plot_pil, average_plot_name = plot_average_scores()
task_plot_pil, task_plot_name = plot_task_performance()
top_models_plot_pil, top_models_plot_name = plot_task_specific_top_models()
heatmap_plot_pil, heatmap_plot_name = plot_heatmap()
plot_dict = {
"average_performance": (average_plot_pil, average_plot_name),
"task_performance": (task_plot_pil, task_plot_name),
"top_models": (top_models_plot_pil, top_models_plot_name),
"heatmap": (heatmap_plot_pil, heatmap_plot_name)
}
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, 'w') as zf:
zf.writestr("model_scores.csv", csv_data)
for name, (pil_image, filename) in plot_dict.items():
image_bytes = io.BytesIO()
pil_image.save(image_bytes, format='PNG')
image_bytes.seek(0)
zf.writestr(filename, image_bytes.read())
# Also try scraping each model for a YAML config
for model_name in df_full["Model Configuration"].to_list():
yaml_content = scrape_mergekit_config(model_name)
if ("No YAML configuration found" not in yaml_content) and ("Failed to fetch model page" not in yaml_content):
zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode())
zip_buffer.seek(0)
return zip_buffer, "analysis_data.zip"
# --------------------------------------------------------------------
# PART 2: FULL "DATA START" SNIPPET (RANKS 44–105) + Parser
# --------------------------------------------------------------------
benchmark_data = [
# The entire dataset from your "DATA START", rank 44..105
# (the code you posted with "knowledge of config" or scraping logic)
{
"rank": 44,
"name": "sometimesanotion/Qwen2.5-14B-Vimarckoso-v3",
"scores": {
"average": 40.10,
"IFEval": 72.57,
"BBH": 48.58,
"MATH": 34.44,
"GPQA": 17.34,
"MUSR": 19.39,
"MMLU-PRO": 48.26
},
"hf_url": "https://huggingface.co/sometimesanotion/Qwen2.5-14B-Vimarckoso-v3",
"known_config": {
"models": [
{"model": "CultriX/SeQwence-14Bv1"},
{"model": "allknowingroger/Qwenslerp5-14B"}
],
"merge_method": "slerp",
"base_model": "CultriX/SeQwence-14Bv1",
"dtype": "bfloat16",
"parameters": {
"t": [0, 0.5, 1, 0.5, 0]
}
}
},
# ... rest of the snippet ...
# (Exactly copy/paste your big block from rank=44 to rank=105)
]
def snippet_scrape_model_page(url):
"""
Same as scrape_model_page, but we keep it separate for clarity.
"""
return scrape_model_page(url)
def snippet_print_benchmark_and_config_info(model_info):
"""
Prints an overview for each model (your "DATA START" logic),
either known config or scraping snippet.
"""
print(f"---\nModel Rank: {model_info['rank']}")
print(f"Model Name: {model_info['name']}")
print(f"Model average score across benchmarks in %: {model_info['scores']['average']}")
print(f"Models average score on IFEval benchmarks in %: {model_info['scores']['IFEval']}")
print(f"Models average score on BBH benchmarks in %: {model_info['scores']['BBH']}")
print(f"Models average score on MATH benchmarks in %: {model_info['scores']['MATH']}")
print(f"Models average score in GPQA benchmarks in %: {model_info['scores']['GPQA']}")
print(f"Models average score in MUSR benchmarks in %: {model_info['scores']['MUSR']}")
print(f"Models average score in MMLU-PRO benchmarks in %: {model_info['scores']['MMLU-PRO']}")
# If there's a known_config, print it as YAML
if model_info["known_config"] is not None:
print("###")
print("models:")
for m in model_info["known_config"]["models"]:
print(f" - model: {m['model']}")
print(f"merge_method: {model_info['known_config']['merge_method']}")
print(f"base_model: {model_info['known_config']['base_model']}")
print(f"dtype: {model_info['known_config']['dtype']}")
print("parameters:")
print(f" t: {model_info['known_config']['parameters']['t']} # V shaped curve: Hermes for input & output, WizardMath in the middle layers")
print("###")
return
# Otherwise, scrape
scraped = snippet_scrape_model_page(model_info["hf_url"])
if isinstance(scraped, str):
# Means it's an error string or something
if "Error:" in scraped:
print("(No MergeKit configuration found or error occurred.)\n")
# optionally print snippet
else:
print(scraped)
return
else:
# It's presumably a dict: { "yaml_configuration": "...", "metadata": "..." }
if ("No YAML configuration found." in scraped["yaml_configuration"]):
print("(No MergeKit configuration found.)\n")
# Print your snippet code
print("You can try the following Python script to scrape the model page:\n")
print("#" * 70)
print(f'''import requests
from bs4 import BeautifulSoup
def scrape_model_page(model_url):
try:
response = requests.get(model_url)
if response.status_code != 200:
return f"Error: Unable to fetch the page (Status Code: {{response.status_code}})"
soup = BeautifulSoup(response.text, "html.parser")
yaml_config = soup.find("pre")
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
metadata_section = soup.find("div", class_="metadata")
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
return {{
"yaml_configuration": yaml_text,
"metadata": metadata_text
}}
except Exception as e:
return f"Error: {{str(e)}}"
if __name__ == "__main__":
model_url = "{model_info['hf_url']}"
result = scrape_model_page(model_url)
print(result)''')
print("#" * 70)
else:
print("###")
print(scraped["yaml_configuration"])
print("###")
def run_non_tiny_benchmarks():
"""
Captures the stdout from printing each model in benchmark_data
(ranks 44 to 105), returning a single string for Gradio to display.
"""
old_stdout = sys.stdout
buffer = io.StringIO()
sys.stdout = buffer
for model in benchmark_data:
snippet_print_benchmark_and_config_info(model)
sys.stdout = old_stdout
return buffer.getvalue()
# --------------------------------------------------------------------
# PART 3: GRADIO APP (Your existing UI plus the "Parse Non-Tiny" button)
# --------------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
# The existing UI
with gr.Row():
btn1 = gr.Button("Show Average Performance")
img1 = gr.Image(type="pil", label="Average Performance Plot")
img1_download = gr.File(label="Download Average Performance")
btn1.click(plot_average_scores, outputs=[img1, img1_download])
with gr.Row():
btn2 = gr.Button("Show Task Performance")
img2 = gr.Image(type="pil", label="Task Performance Plot")
img2_download = gr.File(label="Download Task Performance")
btn2.click(plot_task_performance, outputs=[img2, img2_download])
with gr.Row():
btn3 = gr.Button("Task-Specific Top Models")
img3 = gr.Image(type="pil", label="Task-Specific Top Models Plot")
img3_download = gr.File(label="Download Top Models")
btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
with gr.Row():
btn4 = gr.Button("Plot Performance Heatmap")
heatmap_img = gr.Image(type="pil", label="Performance Heatmap")
heatmap_download = gr.File(label="Download Heatmap")
btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
with gr.Row():
model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
with gr.Column():
scrape_btn = gr.Button("Scrape MergeKit Configuration")
yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.")
scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output)
with gr.Column():
save_yaml_btn = gr.Button("Save MergeKit Configuration")
yaml_download = gr.File(label="Download MergeKit Configuration")
save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download)
with gr.Row():
download_all_btn = gr.Button("Download Everything")
all_downloads = gr.File(label="Download All Data")
download_all_btn.click(download_all_data, outputs=all_downloads)
# Live scraping feature
gr.Markdown("## Live Scraping Features")
with gr.Row():
url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co/<model>")
live_scrape_btn = gr.Button("Scrape Model Page")
live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)
# NEW: Non-Tiny Benchmarks button
gr.Markdown("## Non-Tiny Benchmark Parser (Ranks 44–105)")
with gr.Row():
parse_non_tiny_btn = gr.Button("Parse Non-Tiny Benchmarks")
parse_non_tiny_output = gr.Textbox(label="Non-Tiny Benchmark Output", lines=30)
parse_non_tiny_btn.click(fn=run_non_tiny_benchmarks, outputs=parse_non_tiny_output)
demo.launch()