Spaces:
Sleeping
Sleeping
| import os | |
| import clip | |
| import torch | |
| from torchvision.datasets import CIFAR100 | |
| from PIL import Image | |
| import gradio as gr | |
| # Load the model | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model, preprocess = clip.load('ViT-B/32', device) | |
| # Download the dataset | |
| cifar100 = CIFAR100(root=os.path.expanduser("~/.cache"), download=True, train=False) | |
| text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in cifar100.classes]).to(device) | |
| def generateOutput(source): | |
| # Prepare the inputs | |
| # image, class_id = cifar100[3637] | |
| image = Image.fromarray(source.astype('uint8'), 'RGB') | |
| image_input = preprocess(image).unsqueeze(0).to(device) | |
| with torch.no_grad(): | |
| image_features = model.encode_image(image_input) | |
| text_features = model.encode_text(text_inputs) | |
| # Pick the top 5 most similar labels for the image | |
| image_features /= image_features.norm(dim=-1, keepdim=True) | |
| text_features /= text_features.norm(dim=-1, keepdim=True) | |
| similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1) | |
| values, indices = similarity[0].topk(5) | |
| # Result in Text | |
| outputText = "\nTop predictions:\n" | |
| for value, index in zip(values, indices): | |
| outputText = outputText + f"{cifar100.classes[index]:>16s}: {100 * value.item():.2f}% \n" | |
| return(outputText) | |
| title = "CLIP Classification Inference Trials" | |
| description = "Shows the CLIP Classification based on CIFAR100 data with your own image" | |
| examples = [["Elephants.jpg"],["bloom-blooming-blossom-462118.jpg"], ["Puppies.jpg"], ["photo2.JPG"], ["MultipleItems.jpg"]] | |
| demo = gr.Interface( | |
| generateOutput, | |
| inputs = [ | |
| gr.Image(width=256, height=256, label="Input Image"), | |
| ], | |
| outputs = [ | |
| gr.Text(), | |
| ], | |
| title = title, | |
| description = description, | |
| examples = examples, | |
| cache_examples=False | |
| ) | |
| demo.launch() |