Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ from threading import Thread
|
|
| 6 |
import gradio as gr
|
| 7 |
import spaces
|
| 8 |
import torch
|
|
|
|
| 9 |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
| 10 |
|
| 11 |
model_id = "google/gemma-3-12b-it"
|
|
@@ -14,8 +15,70 @@ model = Gemma3ForConditionalGeneration.from_pretrained(
|
|
| 14 |
model_id, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager"
|
| 15 |
)
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
def process_new_user_message(message: dict) -> list[dict]:
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
def process_history(history: list[dict]) -> list[dict]:
|
| 21 |
messages = []
|
|
@@ -34,6 +97,7 @@ def process_history(history: list[dict]) -> list[dict]:
|
|
| 34 |
current_user_content.append({"type": "image", "url": content[0]})
|
| 35 |
return messages
|
| 36 |
|
|
|
|
| 37 |
@spaces.GPU(duration=120)
|
| 38 |
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
|
| 39 |
messages = []
|
|
@@ -64,35 +128,30 @@ def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tok
|
|
| 64 |
output += delta
|
| 65 |
yield output
|
| 66 |
|
|
|
|
| 67 |
examples = [
|
| 68 |
[
|
| 69 |
{
|
| 70 |
-
"text": "
|
| 71 |
-
"files": [
|
| 72 |
}
|
| 73 |
],
|
| 74 |
[
|
| 75 |
{
|
| 76 |
-
"text": "
|
| 77 |
-
"files": ["assets/sample-images/
|
| 78 |
}
|
| 79 |
],
|
| 80 |
[
|
| 81 |
{
|
| 82 |
-
"text": "
|
| 83 |
-
"files": ["assets/sample-images/
|
| 84 |
}
|
| 85 |
],
|
| 86 |
[
|
| 87 |
{
|
| 88 |
-
"text": "
|
| 89 |
-
"files": ["assets/sample-images/
|
| 90 |
-
}
|
| 91 |
-
],
|
| 92 |
-
[
|
| 93 |
-
{
|
| 94 |
-
"text": "Descreva a atmosfera da cena.",
|
| 95 |
-
"files": ["assets/sample-images/05.png"],
|
| 96 |
}
|
| 97 |
],
|
| 98 |
[
|
|
@@ -120,7 +179,7 @@ examples = [
|
|
| 120 |
],
|
| 121 |
[
|
| 122 |
{
|
| 123 |
-
"text": "Crie uma história curta
|
| 124 |
"files": [
|
| 125 |
"assets/sample-images/09-1.png",
|
| 126 |
"assets/sample-images/09-2.png",
|
|
@@ -132,8 +191,8 @@ examples = [
|
|
| 132 |
],
|
| 133 |
[
|
| 134 |
{
|
| 135 |
-
"text": "Descreva
|
| 136 |
-
"files": ["assets/sample-images/
|
| 137 |
}
|
| 138 |
],
|
| 139 |
[
|
|
@@ -160,20 +219,51 @@ examples = [
|
|
| 160 |
"files": ["assets/additional-examples/4.png"],
|
| 161 |
}
|
| 162 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
]
|
| 164 |
|
|
|
|
| 165 |
demo = gr.ChatInterface(
|
| 166 |
fn=run,
|
| 167 |
type="messages",
|
| 168 |
-
textbox=gr.MultimodalTextbox(file_types=["image"], file_count="multiple"),
|
| 169 |
multimodal=True,
|
| 170 |
additional_inputs=[
|
| 171 |
-
gr.Textbox(label="System Prompt", value="Você é um assistente
|
| 172 |
-
gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=
|
| 173 |
],
|
| 174 |
stop_btn=False,
|
| 175 |
-
title="Gemma 3 12B
|
| 176 |
-
description="<img src='https://huggingface.co/spaces/huggingface-projects/gemma-3-12b-it/resolve/main/assets/logo.png' id='logo'
|
| 177 |
examples=examples,
|
| 178 |
run_examples_on_click=False,
|
| 179 |
cache_examples=False,
|
|
@@ -182,4 +272,4 @@ demo = gr.ChatInterface(
|
|
| 182 |
)
|
| 183 |
|
| 184 |
if __name__ == "__main__":
|
| 185 |
-
demo.launch()
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
import spaces
|
| 8 |
import torch
|
| 9 |
+
import re
|
| 10 |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
| 11 |
|
| 12 |
model_id = "google/gemma-3-12b-it"
|
|
|
|
| 15 |
model_id, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager"
|
| 16 |
)
|
| 17 |
|
| 18 |
+
import cv2
|
| 19 |
+
from PIL import Image
|
| 20 |
+
import numpy as np
|
| 21 |
+
import tempfile
|
| 22 |
+
|
| 23 |
+
def downsample_video(video_path):
|
| 24 |
+
vidcap = cv2.VideoCapture(video_path)
|
| 25 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 26 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 27 |
+
|
| 28 |
+
frame_interval = int(fps / 3)
|
| 29 |
+
frames = []
|
| 30 |
+
|
| 31 |
+
for i in range(0, total_frames, frame_interval):
|
| 32 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 33 |
+
success, image = vidcap.read()
|
| 34 |
+
if success:
|
| 35 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 36 |
+
pil_image = Image.fromarray(image)
|
| 37 |
+
timestamp = round(i / fps, 2)
|
| 38 |
+
frames.append((pil_image, timestamp))
|
| 39 |
+
|
| 40 |
+
vidcap.release()
|
| 41 |
+
return frames
|
| 42 |
+
|
| 43 |
+
|
| 44 |
def process_new_user_message(message: dict) -> list[dict]:
|
| 45 |
+
if message["files"]:
|
| 46 |
+
if "<image>" in message["text"]:
|
| 47 |
+
content = []
|
| 48 |
+
print("message[files]", message["files"])
|
| 49 |
+
parts = re.split(r'(<image>)', message["text"])
|
| 50 |
+
image_index = 0
|
| 51 |
+
print("parts", parts)
|
| 52 |
+
for part in parts:
|
| 53 |
+
print("part", part)
|
| 54 |
+
if part == "<image>":
|
| 55 |
+
content.append({"type": "image", "url": message["files"][image_index]})
|
| 56 |
+
print("file", message["files"][image_index])
|
| 57 |
+
image_index += 1
|
| 58 |
+
elif part.strip():
|
| 59 |
+
content.append({"type": "text", "text": part.strip()})
|
| 60 |
+
elif isinstance(part, str) and not part == "<image>":
|
| 61 |
+
content.append({"type": "text", "text": part})
|
| 62 |
+
print(content)
|
| 63 |
+
return content
|
| 64 |
+
elif message["files"][0].endswith(".mp4"):
|
| 65 |
+
content = []
|
| 66 |
+
video = message["files"].pop(0)
|
| 67 |
+
frames = downsample_video(video)
|
| 68 |
+
for frame in frames:
|
| 69 |
+
pil_image, timestamp = frame
|
| 70 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file:
|
| 71 |
+
pil_image.save(temp_file.name)
|
| 72 |
+
content.append({"type": "text", "text": f"Frame {timestamp}:"})
|
| 73 |
+
content.append({"type": "image", "url": temp_file.name})
|
| 74 |
+
print(content)
|
| 75 |
+
return content
|
| 76 |
+
else:
|
| 77 |
+
# non interleaved images
|
| 78 |
+
return [{"type": "text", "text": message["text"]}, *[{"type": "image", "url": path} for path in message["files"]]]
|
| 79 |
+
else:
|
| 80 |
+
return [{"type": "text", "text": message["text"]}]
|
| 81 |
+
|
| 82 |
|
| 83 |
def process_history(history: list[dict]) -> list[dict]:
|
| 84 |
messages = []
|
|
|
|
| 97 |
current_user_content.append({"type": "image", "url": content[0]})
|
| 98 |
return messages
|
| 99 |
|
| 100 |
+
|
| 101 |
@spaces.GPU(duration=120)
|
| 102 |
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
|
| 103 |
messages = []
|
|
|
|
| 128 |
output += delta
|
| 129 |
yield output
|
| 130 |
|
| 131 |
+
|
| 132 |
examples = [
|
| 133 |
[
|
| 134 |
{
|
| 135 |
+
"text": "Preciso estar no Japão por 10 dias, indo para Tóquio, Kyoto e Osaka. Pense no número de atrações em cada uma delas e aloque o número de dias para cada cidade. Faça recomendações de transporte público.",
|
| 136 |
+
"files": [],
|
| 137 |
}
|
| 138 |
],
|
| 139 |
[
|
| 140 |
{
|
| 141 |
+
"text": "Escreva o código matplotlib para gerar o mesmo gráfico de barras.",
|
| 142 |
+
"files": ["assets/sample-images/barchart.png"],
|
| 143 |
}
|
| 144 |
],
|
| 145 |
[
|
| 146 |
{
|
| 147 |
+
"text": "O que há de estranho neste vídeo?",
|
| 148 |
+
"files": ["assets/sample-images/tmp.mp4"],
|
| 149 |
}
|
| 150 |
],
|
| 151 |
[
|
| 152 |
{
|
| 153 |
+
"text": "Eu já tenho este suplemento <image> e quero comprar este outro <image>. Há algum aviso que eu deva saber?",
|
| 154 |
+
"files": ["assets/sample-images/pill1.png", "assets/sample-images/pill2.png"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
}
|
| 156 |
],
|
| 157 |
[
|
|
|
|
| 179 |
],
|
| 180 |
[
|
| 181 |
{
|
| 182 |
+
"text": "Crie uma história curta baseada na sequência de imagens.",
|
| 183 |
"files": [
|
| 184 |
"assets/sample-images/09-1.png",
|
| 185 |
"assets/sample-images/09-2.png",
|
|
|
|
| 191 |
],
|
| 192 |
[
|
| 193 |
{
|
| 194 |
+
"text": "Descreva essa imagem.",
|
| 195 |
+
"files": ["assets/sample-images/PIX.png"],
|
| 196 |
}
|
| 197 |
],
|
| 198 |
[
|
|
|
|
| 219 |
"files": ["assets/additional-examples/4.png"],
|
| 220 |
}
|
| 221 |
],
|
| 222 |
+
[
|
| 223 |
+
{
|
| 224 |
+
"text": "Legende esta imagem.",
|
| 225 |
+
"files": ["assets/sample-images/01.png"],
|
| 226 |
+
}
|
| 227 |
+
],
|
| 228 |
+
[
|
| 229 |
+
{
|
| 230 |
+
"text": "O que diz a placa?",
|
| 231 |
+
"files": ["assets/sample-images/02.png"],
|
| 232 |
+
}
|
| 233 |
+
],
|
| 234 |
+
[
|
| 235 |
+
{
|
| 236 |
+
"text": "Compare e contraste as duas imagens.",
|
| 237 |
+
"files": ["assets/sample-images/03.png"],
|
| 238 |
+
}
|
| 239 |
+
],
|
| 240 |
+
[
|
| 241 |
+
{
|
| 242 |
+
"text": "Liste todos os objetos na imagem e suas cores.",
|
| 243 |
+
"files": ["assets/sample-images/04.png"],
|
| 244 |
+
}
|
| 245 |
+
],
|
| 246 |
+
[
|
| 247 |
+
{
|
| 248 |
+
"text": "Descreva a atmosfera da cena.",
|
| 249 |
+
"files": ["assets/sample-images/05.png"],
|
| 250 |
+
}
|
| 251 |
+
],
|
| 252 |
]
|
| 253 |
|
| 254 |
+
|
| 255 |
demo = gr.ChatInterface(
|
| 256 |
fn=run,
|
| 257 |
type="messages",
|
| 258 |
+
textbox=gr.MultimodalTextbox(file_types=["image", ".mp4"], file_count="multiple"),
|
| 259 |
multimodal=True,
|
| 260 |
additional_inputs=[
|
| 261 |
+
gr.Textbox(label="System Prompt", value="Você é um assistente, responder em ptbr."),
|
| 262 |
+
gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700),
|
| 263 |
],
|
| 264 |
stop_btn=False,
|
| 265 |
+
title="Gemma 3 12B PT-BR",
|
| 266 |
+
description="<img src='https://huggingface.co/spaces/huggingface-projects/gemma-3-12b-it/resolve/main/assets/logo.png' id='logo' /><br>This is a demo of Gemma 3 12B it, a vision language model with outstanding performance on a wide range of tasks. You can upload images, interleaved images and videos. Note that video input only supports single-turn conversation and mp4 input.",
|
| 267 |
examples=examples,
|
| 268 |
run_examples_on_click=False,
|
| 269 |
cache_examples=False,
|
|
|
|
| 272 |
)
|
| 273 |
|
| 274 |
if __name__ == "__main__":
|
| 275 |
+
demo.launch()
|