Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
update frontend to prepare for office plot
Browse files- app.py +80 -26
- classes_office.npy +3 -0
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -9,19 +9,32 @@ from transformers import (
|
|
| 9 |
TextClassificationPipeline,
|
| 10 |
pipeline,
|
| 11 |
)
|
|
|
|
| 12 |
from langdetect import detect
|
| 13 |
from matplotlib import pyplot as plt
|
| 14 |
import imageio
|
| 15 |
|
| 16 |
# move constants into extra file
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
UNKNOWN_LANG_TEXT = (
|
| 19 |
"The language is not recognized, it must be either in German or in French."
|
| 20 |
)
|
| 21 |
-
PLACEHOLDER_TEXT = "Geben Sie bitte den Titel und den
|
| 22 |
|
| 23 |
UNSURE_DE_TEXT = "Das ML-Modell ist nicht sicher. Das Departement könnte sein : \n\n"
|
| 24 |
UNSURE_FR_TEXT = "Le modèle ML n'est pas sûr. Le département pourrait être : \n\n"
|
|
|
|
|
|
|
|
|
|
| 25 |
BARS_DEP_FR = (
|
| 26 |
"DDPS",
|
| 27 |
"DFI",
|
|
@@ -60,10 +73,10 @@ def load_model(modelFolder):
|
|
| 60 |
return pipe
|
| 61 |
|
| 62 |
|
| 63 |
-
def translate_to_de(
|
| 64 |
"""Translates french user input to German for the model to reach better classification."""
|
| 65 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-fr-de")
|
| 66 |
-
translatedText = translator(
|
| 67 |
text = translatedText[0]["translation_text"]
|
| 68 |
return text
|
| 69 |
|
|
@@ -115,35 +128,76 @@ def show_chosen_category(barnames, rates, language):
|
|
| 115 |
|
| 116 |
|
| 117 |
pipeDep = load_model("saved_model_dep")
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
|
| 121 |
-
|
| 122 |
-
def attribution(inputText):
|
| 123 |
plt.clf()
|
| 124 |
-
language = detect(
|
| 125 |
|
| 126 |
# Translate the input to german if necessary
|
| 127 |
if language == "fr":
|
| 128 |
-
|
| 129 |
elif language != "de":
|
| 130 |
return UNKNOWN_LANG_TEXT, None
|
| 131 |
|
| 132 |
# Make the prediction with the 1000 first characters
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
TextClassificationPipeline,
|
| 10 |
pipeline,
|
| 11 |
)
|
| 12 |
+
from sklearn import preprocessing
|
| 13 |
from langdetect import detect
|
| 14 |
from matplotlib import pyplot as plt
|
| 15 |
import imageio
|
| 16 |
|
| 17 |
# move constants into extra file
|
| 18 |
+
DESCRIPTION = """Diese Anwendung klassifiziert Vorstöße in Departements und schlägt auch ein
|
| 19 |
+
mögliches Office vor. Bitte bewerten Sie für sich, ob Sie dem Office-Vorschlag
|
| 20 |
+
nachkommen wollen, oder Ihren Vorstoß in einem anderen Office sehen, und leiten Sie
|
| 21 |
+
nach eigenem Ermessen weiter. \n\n
|
| 22 |
+
Cette application classe les requêtes dans les départements et propose également un
|
| 23 |
+
office possible. Veuillez évaluer pour vous-même si vous souhaitez suivre la
|
| 24 |
+
proposition d'office ou si vous souhaitez voir votre démarche dans un autre office
|
| 25 |
+
et transmettez à votre discrétion."""
|
| 26 |
+
TITLE_DE = "Automatisierte Einteilung von Vorstößen in Departements & Offices"
|
| 27 |
+
TITLE_FR = "Où aller ? Classification des départements & bureaux"
|
| 28 |
UNKNOWN_LANG_TEXT = (
|
| 29 |
"The language is not recognized, it must be either in German or in French."
|
| 30 |
)
|
| 31 |
+
PLACEHOLDER_TEXT = "Geben Sie bitte den Titel und den 'Submitted Text' des Vorstoss ein.\nVeuillez entrer le titre et le 'Submitted Text' de la requête."
|
| 32 |
|
| 33 |
UNSURE_DE_TEXT = "Das ML-Modell ist nicht sicher. Das Departement könnte sein : \n\n"
|
| 34 |
UNSURE_FR_TEXT = "Le modèle ML n'est pas sûr. Le département pourrait être : \n\n"
|
| 35 |
+
|
| 36 |
+
ML_MODEL_SURE = 0.6
|
| 37 |
+
|
| 38 |
BARS_DEP_FR = (
|
| 39 |
"DDPS",
|
| 40 |
"DFI",
|
|
|
|
| 73 |
return pipe
|
| 74 |
|
| 75 |
|
| 76 |
+
def translate_to_de(SubmittedText):
|
| 77 |
"""Translates french user input to German for the model to reach better classification."""
|
| 78 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-fr-de")
|
| 79 |
+
translatedText = translator(SubmittedText[0:1000])
|
| 80 |
text = translatedText[0]["translation_text"]
|
| 81 |
return text
|
| 82 |
|
|
|
|
| 128 |
|
| 129 |
|
| 130 |
pipeDep = load_model("saved_model_dep")
|
| 131 |
+
pipeOffice = load_model("saved_model_dep")
|
| 132 |
+
|
| 133 |
+
labelencoderOffice = preprocessing.LabelEncoder()
|
| 134 |
+
labelencoderOffice.classes_ = np.load("classes_office.npy")
|
| 135 |
|
| 136 |
|
| 137 |
+
def textclassification(SubmittedText):
|
|
|
|
| 138 |
plt.clf()
|
| 139 |
+
language = detect(SubmittedText)
|
| 140 |
|
| 141 |
# Translate the input to german if necessary
|
| 142 |
if language == "fr":
|
| 143 |
+
SubmittedText = translate_to_de(SubmittedText)
|
| 144 |
elif language != "de":
|
| 145 |
return UNKNOWN_LANG_TEXT, None
|
| 146 |
|
| 147 |
# Make the prediction with the 1000 first characters
|
| 148 |
+
images = []
|
| 149 |
+
chosenCategoryTexts = []
|
| 150 |
+
for pipe in (pipeDep, pipeOffice):
|
| 151 |
+
prediction = pipe(SubmittedText[0:1000], return_all_scores=True)
|
| 152 |
+
rates = [row["score"] for row in prediction[0]]
|
| 153 |
+
|
| 154 |
+
# Create barplot & output text
|
| 155 |
+
im, barnames = create_bar_plot(rates, language)
|
| 156 |
+
images.append(im)
|
| 157 |
+
|
| 158 |
+
chosenCategoryText = show_chosen_category(barnames, rates, language)
|
| 159 |
+
chosenCategoryTexts.append(chosenCategoryText)
|
| 160 |
+
|
| 161 |
+
# return chosenCategoryText & image for both predictions
|
| 162 |
+
return chosenCategoryTexts[0], images[0], chosenCategoryTexts[1], images[1]
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
# TODO set example picture upon loading
|
| 166 |
+
# TODO vielleicht ein paar Sachen zum Einstellen im Frontend?
|
| 167 |
+
|
| 168 |
+
# Launch UI
|
| 169 |
+
with gr.Blocks(
|
| 170 |
+
# Set theme matching BK CH
|
| 171 |
+
gr.themes.Monochrome(
|
| 172 |
+
primary_hue="red",
|
| 173 |
+
secondary_hue="red",
|
| 174 |
+
font=[gr.themes.GoogleFont("Inter"), "Arial", "sans-serif"],
|
| 175 |
+
)
|
| 176 |
+
) as demo:
|
| 177 |
+
gr.Markdown(f"# {TITLE_DE}\n # {TITLE_FR}\n\n {DESCRIPTION}")
|
| 178 |
+
|
| 179 |
+
# Organize layout in three columns for input, prediction I and prediction II
|
| 180 |
+
with gr.Row():
|
| 181 |
+
with gr.Column(scale=2):
|
| 182 |
+
name = gr.Textbox(label="", lines=28, placeholder=PLACEHOLDER_TEXT)
|
| 183 |
+
predict_btn = gr.Button("Submit | Soumettre")
|
| 184 |
+
with gr.Column(scale=2):
|
| 185 |
+
output_text_dep = gr.Textbox(label="Departement prediction:")
|
| 186 |
+
output_image_dep = gr.Image(label="Departement")
|
| 187 |
+
with gr.Column(scale=2):
|
| 188 |
+
output_text_office = gr.Textbox(label="Office prediction:")
|
| 189 |
+
output_image_office = gr.Image(label="Office")
|
| 190 |
+
|
| 191 |
+
predict_btn.click(
|
| 192 |
+
fn=textclassification,
|
| 193 |
+
inputs=name,
|
| 194 |
+
outputs=[
|
| 195 |
+
output_text_dep,
|
| 196 |
+
output_image_dep,
|
| 197 |
+
output_text_office,
|
| 198 |
+
output_image_office,
|
| 199 |
+
],
|
| 200 |
+
api_name="predict",
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
demo.launch()
|
classes_office.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:91aa3c28bb43aeb228af856650169f97f6326064b2dedb4cb438d5541918a94f
|
| 3 |
+
size 1480
|
requirements.txt
CHANGED
|
@@ -5,6 +5,7 @@ matplotlib
|
|
| 5 |
imageio
|
| 6 |
torch
|
| 7 |
sentencepiece
|
|
|
|
| 8 |
|
| 9 |
gradio
|
| 10 |
langdetect
|
|
|
|
| 5 |
imageio
|
| 6 |
torch
|
| 7 |
sentencepiece
|
| 8 |
+
sklearn
|
| 9 |
|
| 10 |
gradio
|
| 11 |
langdetect
|