Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,17 @@ from sentence_transformers import SentenceTransformer
|
|
| 3 |
import gradio as gr
|
| 4 |
import spacy
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
|
| 8 |
|
|
@@ -12,24 +23,23 @@ df_new = pd.read_csv('last_df.csv')
|
|
| 12 |
df_new['country'] = df_new['country'].replace('Türkiye', 'Turkey')
|
| 13 |
#
|
| 14 |
#
|
| 15 |
-
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
# return df_new
|
| 33 |
|
| 34 |
|
| 35 |
|
|
@@ -60,18 +70,18 @@ def process_query(query):
|
|
| 60 |
query_embedding = model.encode(query)
|
| 61 |
|
| 62 |
# Filter DataFrame by location
|
| 63 |
-
|
| 64 |
|
| 65 |
# Convert query_embedding to a tensor if it is not already
|
| 66 |
query_embedding_tensor = torch.tensor(query_embedding)
|
| 67 |
|
| 68 |
# Apply the similarity function to the filtered DataFrame
|
| 69 |
-
|
| 70 |
|
| 71 |
-
df_new['similarity_score'] = df_new.apply(lambda row: get_similarity_score(row, query_embedding_tensor), axis=1)
|
| 72 |
|
| 73 |
|
| 74 |
-
top_similar =
|
| 75 |
|
| 76 |
|
| 77 |
hotel_name = top_similar['hotel_name'].values[0]
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import spacy
|
| 5 |
|
| 6 |
+
import subprocess
|
| 7 |
+
|
| 8 |
+
# Run the spacy model download command
|
| 9 |
+
|
| 10 |
+
try:
|
| 11 |
+
# Try to load the model to check if it's already installed
|
| 12 |
+
nlp = spacy.load("en_core_web_trf")
|
| 13 |
+
except OSError:
|
| 14 |
+
# If the model is not found, download it
|
| 15 |
+
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_trf"])
|
| 16 |
+
nlp = spacy.load("en_core_web_trf")
|
| 17 |
|
| 18 |
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
|
| 19 |
|
|
|
|
| 23 |
df_new['country'] = df_new['country'].replace('Türkiye', 'Turkey')
|
| 24 |
#
|
| 25 |
#
|
| 26 |
+
|
| 27 |
+
# Function to extract city name from the query
|
| 28 |
+
def get_city_name(query):
|
| 29 |
+
text_query = nlp(query)
|
| 30 |
+
for city in text_query.ents:
|
| 31 |
+
if city.label_ == "GPE":
|
| 32 |
+
return city.text.lower()
|
| 33 |
+
return None
|
| 34 |
+
|
| 35 |
+
# Function to filter DataFrame by location
|
| 36 |
+
def filter_by_loc(query):
|
| 37 |
+
city_name = get_city_name(query)
|
| 38 |
+
if city_name in df_new['locality'].str.lower().unique():
|
| 39 |
+
filtered_df = df_new[df_new['locality'].str.lower() == city_name.lower()]
|
| 40 |
+
return filtered_df
|
| 41 |
+
else:
|
| 42 |
+
return df_new
|
|
|
|
| 43 |
|
| 44 |
|
| 45 |
|
|
|
|
| 70 |
query_embedding = model.encode(query)
|
| 71 |
|
| 72 |
# Filter DataFrame by location
|
| 73 |
+
filtered_data = filter_by_loc(query)
|
| 74 |
|
| 75 |
# Convert query_embedding to a tensor if it is not already
|
| 76 |
query_embedding_tensor = torch.tensor(query_embedding)
|
| 77 |
|
| 78 |
# Apply the similarity function to the filtered DataFrame
|
| 79 |
+
filtered_data['similarity_score'] = filtered_data.apply(lambda row: get_similarity_score(row, query_embedding_tensor), axis=1)
|
| 80 |
|
| 81 |
+
# df_new['similarity_score'] = df_new.apply(lambda row: get_similarity_score(row, query_embedding_tensor), axis=1)
|
| 82 |
|
| 83 |
|
| 84 |
+
top_similar = filtered_data.sort_values('similarity_score', ascending=False).head(1)
|
| 85 |
|
| 86 |
|
| 87 |
hotel_name = top_similar['hotel_name'].values[0]
|