Spaces:
Build error
Build error
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,138 +0,0 @@
|
|
| 1 |
-
from langchain.prompts import PromptTemplate
|
| 2 |
-
from langchain_huggingface import HuggingFaceEndpoint
|
| 3 |
-
from PIL import Image
|
| 4 |
-
import os
|
| 5 |
-
import secrets
|
| 6 |
-
from pathlib import Path
|
| 7 |
-
import tempfile
|
| 8 |
-
import gradio as gr
|
| 9 |
-
|
| 10 |
-
# Initialize the Hugging Face BLIP model
|
| 11 |
-
image_captioning_model = HuggingFaceEndpoint(
|
| 12 |
-
endpoint_url="https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-base",
|
| 13 |
-
huggingfacehub_api_token=os.getenv("HUGGING_FACE_API"), # Ensure you set this in your environment
|
| 14 |
-
temperature=0.7,
|
| 15 |
-
max_new_tokens=1024,
|
| 16 |
-
)
|
| 17 |
-
math_llm=HuggingFaceEndpoint(
|
| 18 |
-
endpoint_url="https://api-inference.huggingface.co/models/Qwen/Qwen2.5-Math-7B-Instruct",
|
| 19 |
-
huggingfacehub_api_token=os.getenv("HUGGING_FACE_API"), # Ensure you set this in your environment
|
| 20 |
-
temperature=0.7,
|
| 21 |
-
max_new_tokens=1024,)
|
| 22 |
-
# Function to process the image
|
| 23 |
-
def process_image(image, shouldConvert=False):
|
| 24 |
-
# Ensure temporary directory exists
|
| 25 |
-
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
|
| 26 |
-
Path(tempfile.gettempdir()) / "gradio"
|
| 27 |
-
)
|
| 28 |
-
os.makedirs(uploaded_file_dir, exist_ok=True)
|
| 29 |
-
|
| 30 |
-
# Save the uploaded image
|
| 31 |
-
name = f"tmp{secrets.token_hex(20)}.jpg"
|
| 32 |
-
filename = os.path.join(uploaded_file_dir, name)
|
| 33 |
-
if shouldConvert:
|
| 34 |
-
# Convert image to RGB mode if it contains transparency
|
| 35 |
-
new_img = Image.new("RGB", size=(image.width, image.height), color=(255, 255, 255))
|
| 36 |
-
new_img.paste(image, (0, 0), mask=image)
|
| 37 |
-
image = new_img
|
| 38 |
-
image.save(filename)
|
| 39 |
-
|
| 40 |
-
# Define a PromptTemplate for text instruction
|
| 41 |
-
template = """
|
| 42 |
-
You are a helpful AI assistant.
|
| 43 |
-
Please describe the math-related content in this image, ensuring that any LaTeX formulas are correctly transcribed.
|
| 44 |
-
Non-mathematical details do not need to be described.
|
| 45 |
-
|
| 46 |
-
Image Path: {image}
|
| 47 |
-
"""
|
| 48 |
-
prompt_template = PromptTemplate(
|
| 49 |
-
input_variables=["image"], # Dynamically insert the image path
|
| 50 |
-
template=template
|
| 51 |
-
)
|
| 52 |
-
|
| 53 |
-
# Create the text instruction by rendering the prompt template
|
| 54 |
-
prompt = prompt_template.format(image=f"file://{filename}")
|
| 55 |
-
|
| 56 |
-
# Use the model with both the image and the generated prompt
|
| 57 |
-
with open(filename, "rb") as img_file:
|
| 58 |
-
response = image_captioning_model({
|
| 59 |
-
"inputs": {
|
| 60 |
-
"image": img_file,
|
| 61 |
-
"text": prompt
|
| 62 |
-
}
|
| 63 |
-
})
|
| 64 |
-
|
| 65 |
-
# Return the model's response
|
| 66 |
-
return response
|
| 67 |
-
|
| 68 |
-
def get_math_response(image_description, user_question):
|
| 69 |
-
template = """
|
| 70 |
-
You are a helpful AI assistant specialized in solving math reasoning problems.
|
| 71 |
-
Analyze the following question carefully and provide a step-by-step explanation along with the answer.
|
| 72 |
-
Image description : {image_description}
|
| 73 |
-
Question: {user_question}?
|
| 74 |
-
"""
|
| 75 |
-
|
| 76 |
-
prompt_template = PromptTemplate(
|
| 77 |
-
input_variables=["user_question","image_description"], # Define the placeholder(s) in the template
|
| 78 |
-
template=template
|
| 79 |
-
)
|
| 80 |
-
formatted_prompt = prompt_template.format(user_question=user_question, image_description=image_description)
|
| 81 |
-
|
| 82 |
-
# Pass the formatted prompt to the model
|
| 83 |
-
response = math_llm(formatted_prompt)
|
| 84 |
-
|
| 85 |
-
# Print the response
|
| 86 |
-
yield response
|
| 87 |
-
|
| 88 |
-
def math_chat_bot(image, sketchpad, question, state):
|
| 89 |
-
current_tab_index = state["tab_index"]
|
| 90 |
-
image_description = None
|
| 91 |
-
# Upload
|
| 92 |
-
if current_tab_index == 0:
|
| 93 |
-
if image is not None:
|
| 94 |
-
image_description = process_image(image)
|
| 95 |
-
# Sketch
|
| 96 |
-
elif current_tab_index == 1:
|
| 97 |
-
print(sketchpad)
|
| 98 |
-
if sketchpad and sketchpad["composite"]:
|
| 99 |
-
image_description = process_image(sketchpad["composite"], True)
|
| 100 |
-
yield from get_math_response(image_description, question)
|
| 101 |
-
css = """
|
| 102 |
-
#qwen-md .katex-display { display: inline; }
|
| 103 |
-
#qwen-md .katex-display>.katex { display: inline; }
|
| 104 |
-
#qwen-md .katex-display>.katex>.katex-html { display: inline; }
|
| 105 |
-
"""
|
| 106 |
-
|
| 107 |
-
def tabs_select(e: gr.SelectData, _state):
|
| 108 |
-
_state["tab_index"] = e.index
|
| 109 |
-
return _state
|
| 110 |
-
|
| 111 |
-
with gr.Blocks(css=css) as demo:
|
| 112 |
-
state = gr.State({"tab_index": 0})
|
| 113 |
-
|
| 114 |
-
with gr.Row():
|
| 115 |
-
with gr.Column():
|
| 116 |
-
with gr.Tabs() as input_tabs:
|
| 117 |
-
with gr.Tab("Upload"):
|
| 118 |
-
input_image = gr.Image(type="pil", label="Upload")
|
| 119 |
-
with gr.Tab("Sketch"):
|
| 120 |
-
input_sketchpad = gr.Sketchpad(type="pil", label="Sketch", layers=False)
|
| 121 |
-
|
| 122 |
-
input_tabs.select(fn=tabs_select, inputs=[state], outputs=[state])
|
| 123 |
-
|
| 124 |
-
input_text = gr.Textbox(label="Input your question")
|
| 125 |
-
with gr.Row():
|
| 126 |
-
clear_btn = gr.ClearButton([input_image, input_sketchpad, input_text])
|
| 127 |
-
submit_btn = gr.Button("Submit", variant="primary")
|
| 128 |
-
|
| 129 |
-
with gr.Column():
|
| 130 |
-
output_md = gr.Markdown(label="Answer", elem_id="qwen-md")
|
| 131 |
-
|
| 132 |
-
submit_btn.click(
|
| 133 |
-
fn=math_chat_bot,
|
| 134 |
-
inputs=[input_image, input_sketchpad, input_text, state],
|
| 135 |
-
outputs=output_md,
|
| 136 |
-
)
|
| 137 |
-
|
| 138 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|