|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
|
|
|
model_name = "mistralai/mistral-7b" |
|
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
|
|
|
|
|
def generate_text(prompt: str, max_length: int = 50): |
|
|
|
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
|
|
|
|
|
outputs = model.generate( |
|
|
input_ids=inputs['input_ids'], |
|
|
max_length=max_length, |
|
|
num_return_sequences=1, |
|
|
temperature=0.7, |
|
|
top_p=0.9, |
|
|
top_k=50 |
|
|
) |
|
|
|
|
|
|
|
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
return generated_text |
|
|
|
|
|
|
|
|
prompt = "The future of artificial intelligence is" |
|
|
generated_output = generate_text(prompt) |
|
|
print("Generated Text:", generated_output) |