import gradio as gr import torch from PIL import Image from diffusers import DiffusionPipeline from transformers import pipeline modeloObtenerTextoImagen = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") modeloGenerarImagen = DiffusionPipeline.from_pretrained("sd-legacy/stable-diffusion-v1-5", torch_dtype=torch.float32) def obtenerDescripcion(imagen): resultadoModeloTI = modeloObtenerTextoImagen(Image.fromarray(imagen)) print(f'La frase que se ha obteneido de la imagen es {resultadoModeloTI}') return modeloGenerarImagen(resultadoModeloTI[0]['generated_text']).images[0] demo = gr.Interface(fn=obtenerDescripcion, inputs="image", outputs="image") demo.launch(share=True)