Apedlop
commited on
Commit
·
5bb262a
1
Parent(s):
3572569
- .env.plantilla +1 -0
- .gitignore +2 -1
- diffusers_disc.py +65 -0
- app4.py → diffusers_empr.py +0 -0
- app3.py → inf_prov_disc.py +5 -1
- inf_prov_empr.py +17 -0
- app1.py → transformer_disc.py +0 -0
- app2.py → transformer_empr.py +0 -0
.env.plantilla
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
TOKEN=""
|
.gitignore
CHANGED
|
@@ -1 +1,2 @@
|
|
| 1 |
-
venv_prueba/
|
|
|
|
|
|
| 1 |
+
venv_prueba/
|
| 2 |
+
.env
|
diffusers_disc.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import soundfile as sf
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from transformers import pipeline
|
| 6 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
+
|
| 9 |
+
# -------------------------
|
| 10 |
+
# MODELO IMAGEN -> TEXTO
|
| 11 |
+
# -------------------------
|
| 12 |
+
modeloObtenerTextoImagen = pipeline(
|
| 13 |
+
"image-to-text",
|
| 14 |
+
model="Salesforce/blip-image-captioning-base"
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
# -------------------------
|
| 18 |
+
# MODELO TEXTO -> AUDIO
|
| 19 |
+
# -------------------------
|
| 20 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
| 21 |
+
modeloTextoAudio = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
| 22 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
| 23 |
+
|
| 24 |
+
# Voz base
|
| 25 |
+
dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
| 26 |
+
speaker_embeddings = torch.tensor(dataset[0]["xvector"]).unsqueeze(0)
|
| 27 |
+
|
| 28 |
+
# -------------------------
|
| 29 |
+
# FUNCIÓN PRINCIPAL
|
| 30 |
+
# -------------------------
|
| 31 |
+
def obtenerDescripcionAudio(imagen):
|
| 32 |
+
# Imagen -> Texto
|
| 33 |
+
resultadoModeloTI = modeloObtenerTextoImagen(Image.fromarray(imagen))
|
| 34 |
+
texto_generado = resultadoModeloTI[0]["generated_text"]
|
| 35 |
+
|
| 36 |
+
print(f"La frase obtenida de la imagen es: {texto_generado}")
|
| 37 |
+
|
| 38 |
+
# Texto -> Audio
|
| 39 |
+
inputs = processor(text=texto_generado, return_tensors="pt")
|
| 40 |
+
audio = modeloTextoAudio.generate_speech(
|
| 41 |
+
inputs["input_ids"],
|
| 42 |
+
speaker_embeddings,
|
| 43 |
+
vocoder=vocoder
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
ruta_audio = "audio_salida.wav"
|
| 47 |
+
sf.write(ruta_audio, audio.numpy(), samplerate=16000)
|
| 48 |
+
|
| 49 |
+
return texto_generado, ruta_audio
|
| 50 |
+
|
| 51 |
+
# -------------------------
|
| 52 |
+
# INTERFAZ GRADIO
|
| 53 |
+
# -------------------------
|
| 54 |
+
demo = gr.Interface(
|
| 55 |
+
fn=obtenerDescripcionAudio,
|
| 56 |
+
inputs=gr.Image(label="📷 Sube una imagen"),
|
| 57 |
+
outputs=[
|
| 58 |
+
gr.Textbox(label="📝 Texto generado"),
|
| 59 |
+
gr.Audio(label="🔊 Audio generado", type="filepath")
|
| 60 |
+
],
|
| 61 |
+
title="Asistente Visual Accesible",
|
| 62 |
+
description="Sube una imagen y la aplicación describe lo que ve y lo lee en voz alta."
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
demo.launch(share=True)
|
app4.py → diffusers_empr.py
RENAMED
|
File without changes
|
app3.py → inf_prov_disc.py
RENAMED
|
@@ -1,9 +1,13 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import requests
|
| 3 |
|
|
|
|
|
|
|
| 4 |
API_URL = "https://router.huggingface.co/hf-inference/models/philschmid/bart-large-cnn-samsum"
|
|
|
|
| 5 |
headers = {
|
| 6 |
-
"Authorization": f"Bearer
|
| 7 |
}
|
| 8 |
|
| 9 |
def query(payload):
|
|
|
|
| 1 |
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
import requests
|
| 4 |
|
| 5 |
+
load_dotenv()
|
| 6 |
+
|
| 7 |
API_URL = "https://router.huggingface.co/hf-inference/models/philschmid/bart-large-cnn-samsum"
|
| 8 |
+
TOKEN = os.getenv("TOKEN")
|
| 9 |
headers = {
|
| 10 |
+
"Authorization": f"Bearer {TOKEN}",
|
| 11 |
}
|
| 12 |
|
| 13 |
def query(payload):
|
inf_prov_empr.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import InferenceClient
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
load_dotenv()
|
| 6 |
+
|
| 7 |
+
client = InferenceClient(
|
| 8 |
+
provider="hf-inference",
|
| 9 |
+
api_key=os.getenv("TOKEN"),
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
output = client.image_segmentation(
|
| 13 |
+
"https://s1.ppllstatics.com/mujerhoy/www/multimedia/202306/02/media/cortadas/[email protected]",
|
| 14 |
+
model="jonathandinu/face-parsing"
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
print(output)
|
app1.py → transformer_disc.py
RENAMED
|
File without changes
|
app2.py → transformer_empr.py
RENAMED
|
File without changes
|