|
|
import gradio as gr |
|
|
from transformers import AutoFeatureExtractor, AutoModelForImageClassification |
|
|
from PIL import Image |
|
|
|
|
|
|
|
|
extractor = AutoFeatureExtractor.from_pretrained("dima806/skin_types_image_detection") |
|
|
model = AutoModelForImageClassification.from_pretrained("dima806/skin_types_image_detection") |
|
|
|
|
|
def detectar_piel(image): |
|
|
inputs = extractor(images=image, return_tensors="pt") |
|
|
outputs = model(**inputs) |
|
|
logits = outputs.logits |
|
|
predicted_class_idx = logits.argmax(-1).item() |
|
|
|
|
|
class_label = model.config.id2label[predicted_class_idx] |
|
|
return class_label |
|
|
|
|
|
iface = gr.Interface( |
|
|
fn=detectar_piel, |
|
|
inputs=gr.Image(type="pil"), |
|
|
outputs=gr.Textbox(), |
|
|
title="Detección tipo de piel", |
|
|
description="Sube una imagen (rostro/zona de piel) y el modelo intentará clasificar el tipo de piel" |
|
|
) |
|
|
|
|
|
iface.launch() |
|
|
|