Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline, BertForSequenceClassification, BertTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# Load the model and tokenizer
|
| 6 |
+
model_path = 'D:\Study\university\Fourth Year\second semster\NLP\final exam\saved_model'
|
| 7 |
+
model = BertForSequenceClassification.from_pretrained(model_path)
|
| 8 |
+
tokenizer = BertTokenizer.from_pretrained(model_path)
|
| 9 |
+
|
| 10 |
+
# Create a pipeline for inference
|
| 11 |
+
nlp_pipeline = pipeline('text-classification', model=model, tokenizer=tokenizer)
|
| 12 |
+
|
| 13 |
+
# Gradio app function
|
| 14 |
+
def classify_text(input_text):
|
| 15 |
+
if input_text.strip() == "":
|
| 16 |
+
return "Please enter some text."
|
| 17 |
+
result = nlp_pipeline(input_text)
|
| 18 |
+
label = result[0]['label']
|
| 19 |
+
score = result[0]['score']
|
| 20 |
+
|
| 21 |
+
# Map labels to 1 for positive and 0 for negative
|
| 22 |
+
label_map = {'LABEL_0': " Negative ", 'LABEL_1': " Postive "}
|
| 23 |
+
mapped_label = label_map[label]
|
| 24 |
+
|
| 25 |
+
return f"Prediction: {mapped_label}, Confidence Score: {score:.4f}"
|
| 26 |
+
|
| 27 |
+
# Gradio interface
|
| 28 |
+
iface = gr.Interface(fn=classify_text, inputs="text", outputs="text", title="Text Classification App",
|
| 29 |
+
description="Classify text as Positive (1) or Negative (0)")
|
| 30 |
+
|
| 31 |
+
# Launch the Gradio app
|
| 32 |
+
iface.launch()
|