Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,18 +3,29 @@ from ultralytics import YOLO
|
|
| 3 |
from PIL import Image
|
| 4 |
import os
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Define the prediction function
|
| 12 |
def predict(image):
|
| 13 |
-
results = model(image) # Run
|
| 14 |
results_img = results[0].plot() # Get image with bounding boxes
|
| 15 |
return Image.fromarray(results_img)
|
| 16 |
|
| 17 |
-
# Get example images from the
|
| 18 |
def get_example_images():
|
| 19 |
examples = []
|
| 20 |
image_folder = "images"
|
|
@@ -25,13 +36,13 @@ def get_example_images():
|
|
| 25 |
|
| 26 |
# Create Gradio interface
|
| 27 |
interface = gr.Interface(
|
| 28 |
-
fn=predict,
|
| 29 |
-
inputs=gr.Image(type="pil"),
|
| 30 |
outputs=gr.Image(type="pil"),
|
| 31 |
-
title="Helmet Detection with YOLO",
|
| 32 |
-
description="Upload an image to detect helmets.",
|
| 33 |
examples=get_example_images()
|
| 34 |
)
|
| 35 |
|
| 36 |
# Launch the interface
|
| 37 |
-
interface.launch(
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
import os
|
| 5 |
|
| 6 |
+
# Load models with priority to YOLOv8
|
| 7 |
+
# Try to load YOLOv8 model first, fall back to YOLOv11 if not available
|
| 8 |
+
model = None
|
| 9 |
+
model_name = ""
|
| 10 |
|
| 11 |
+
if os.path.exists("best.pt"):
|
| 12 |
+
model = YOLO("best.pt")
|
| 13 |
+
model_name = "YOLOv8 (best.pt)"
|
| 14 |
+
print("✓ Loaded YOLOv8 model (best.pt)")
|
| 15 |
+
elif os.path.exists("yolov11nbest.pt"):
|
| 16 |
+
model = YOLO("yolov11nbest.pt")
|
| 17 |
+
model_name = "YOLOv11 (yolov11nbest.pt)"
|
| 18 |
+
print("✓ Loaded YOLOv11 model (yolov11nbest.pt)")
|
| 19 |
+
else:
|
| 20 |
+
raise FileNotFoundError("No model file found. Please ensure 'best.pt' or 'yolov11nbest.pt' exists.")
|
| 21 |
|
| 22 |
# Define the prediction function
|
| 23 |
def predict(image):
|
| 24 |
+
results = model(image) # Run YOLO model on the uploaded image
|
| 25 |
results_img = results[0].plot() # Get image with bounding boxes
|
| 26 |
return Image.fromarray(results_img)
|
| 27 |
|
| 28 |
+
# Get example images from the root folder
|
| 29 |
def get_example_images():
|
| 30 |
examples = []
|
| 31 |
image_folder = "images"
|
|
|
|
| 36 |
|
| 37 |
# Create Gradio interface
|
| 38 |
interface = gr.Interface(
|
| 39 |
+
fn=predict,
|
| 40 |
+
inputs=gr.Image(type="pil"),
|
| 41 |
outputs=gr.Image(type="pil"),
|
| 42 |
+
title=f"Helmet Detection with YOLO",
|
| 43 |
+
description=f"Upload an image to detect helmets. **Currently using: {model_name}**",
|
| 44 |
examples=get_example_images()
|
| 45 |
)
|
| 46 |
|
| 47 |
# Launch the interface
|
| 48 |
+
interface.launch()
|