Abs6187's picture
Update app.py
757c1e0 verified
import os
import torch
# CRITICAL: Redirect cache to temporary storage to avoid hitting storage limits
os.environ['TORCH_HOME'] = '/tmp/torch_cache'
os.environ['HF_HOME'] = '/tmp/huggingface_cache'
os.environ['TRANSFORMERS_CACHE'] = '/tmp/transformers_cache'
os.environ['TMPDIR'] = '/tmp'
torch.hub.set_dir('/tmp/torch_hub')
import gradio as gr
from ultralytics import YOLO
from PIL import Image
# Load models with priority to YOLOv8
# Try to load YOLOv8 model first, fall back to YOLOv11 if not available
model = None
model_name = ""
if os.path.exists("best.pt"):
model = YOLO("best.pt")
model_name = "YOLOv8 (best.pt)"
print("✓ Loaded YOLOv8 model (best.pt)")
elif os.path.exists("yolov11nbest.pt"):
model = YOLO("yolov11nbest.pt")
model_name = "YOLOv11 (yolov11nbest.pt)"
print("✓ Loaded YOLOv11 model (yolov11nbest.pt)")
else:
raise FileNotFoundError("No model file found. Please ensure 'best.pt' or 'yolov11nbest.pt' exists.")
# Define the prediction function with progress updates
def predict(image, progress=gr.Progress()):
progress(0, desc="Starting detection...")
progress(0.3, desc="Running AI model (this may take 20-40 seconds on CPU)...")
results = model(image) # Run YOLO model on the uploaded image
progress(0.8, desc="Drawing bounding boxes...")
results_img = results[0].plot() # Get image with bounding boxes
progress(1.0, desc="Done!")
return Image.fromarray(results_img)
# Get example images from the images folder
def get_example_images():
examples = []
image_folder = "images"
if os.path.exists(image_folder):
for filename in os.listdir(image_folder):
if filename.lower().endswith(('.png', '.jpg', '.jpeg')):
examples.append(os.path.join(image_folder, filename))
return examples
# Custom CSS for better visual appeal
custom_css = """
.progress-bar-wrap {
border-radius: 8px !important;
}
.progress-bar {
background: linear-gradient(90deg, #4CAF50, #2196F3) !important;
}
"""
# Create Gradio interface with better UX
interface = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil", label="📤 Upload Image"),
outputs=gr.Image(type="pil", label="🎯 Detection Result"),
title="🪖 Helmet Detection with YOLO",
description=f"""
**Currently using: {model_name}**
Upload an image to detect helmets and safety equipment. The AI will identify:
- ✅ People wearing helmets (accept-Helmet-)
- ❌ People not wearing helmets (non-Helmet-)
⏱️ **Please be patient**: Detection takes 20-40 seconds on CPU. Watch the progress bar below!
""",
article="""
### 📊 About This Model
This app uses YOLOv8/YOLOv11 for real-time helmet detection in construction and workplace safety scenarios.
**Tips for best results:**
- Use clear, well-lit images
- Ensure people are visible in the frame
- Works best with construction site or workplace photos
**Performance:** Running on CPU (free tier), so inference takes ~30 seconds per image.
### ⭐ Advanced Version Available!
Check out the **[Helmet + License Plate Detection](https://huggingface.co/spaces/Abs6187/Helmet-License-Plate-Detection)** -
an upgraded version that detects BOTH helmets AND license plates!
### 🚀 While you wait...
- Try the example images below
- Read about YOLO object detection: [Ultralytics Docs](https://docs.ultralytics.com)
- Star the repo if you find this useful!
""",
examples=get_example_images(),
cache_examples=False, # Disable caching to speed up startup and reduce storage
allow_flagging="never",
theme=gr.themes.Soft(),
css=custom_css
)
# Launch the interface
interface.launch()