Abs6187 commited on
Commit
a24e771
·
verified ·
1 Parent(s): 3225ed5

Upload FDAM.py

Browse files
Files changed (1) hide show
  1. FDAM.py +169 -0
FDAM.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ """
4
+ Created on Fri Mar 15 14:57:46 2019
5
+
6
+ @author: atavci
7
+ """
8
+
9
+ import pandas as pd
10
+ import numpy as np
11
+
12
+ import seaborn as sns
13
+ import matplotlib.pyplot as plt
14
+
15
+ from sklearn.model_selection import train_test_split
16
+ from sklearn.metrics import confusion_matrix, classification_report
17
+ from sklearn.metrics import roc_curve, auc
18
+
19
+ import xgboost as xgb
20
+ from sklearn.neighbors import KNeighborsClassifier
21
+ from sklearn.ensemble import RandomForestClassifier
22
+ from sklearn.ensemble import VotingClassifier
23
+
24
+ # set seaborn style because it prettier
25
+ sns.set()
26
+ # %% read and plot
27
+ data = pd.read_csv("Data/synthetic-data-from-a-financial-payment-system/bs140513_032310.csv")
28
+
29
+ data.head(5)
30
+
31
+ # Create two dataframes with fraud and non-fraud data
32
+ df_fraud = data.loc[data.fraud == 1]
33
+ df_non_fraud = data.loc[data.fraud == 0]
34
+
35
+
36
+ sns.countplot(x="fraud",data=data)
37
+ plt.title("Count of Fraudulent Payments")
38
+ plt.legend()
39
+ plt.show()
40
+ print("Number of normal examples: ",df_non_fraud.fraud.count())
41
+ print("Number of fradulent examples: ",df_fraud.fraud.count())
42
+ #print(data.fraud.value_counts()) # does the same thing above
43
+
44
+ print("Mean feature values per category",data.groupby('category')['amount','fraud'].mean())
45
+
46
+ print("Columns: ", data.columns)
47
+
48
+
49
+
50
+ # Plot histograms of the amounts in fraud and non-fraud data
51
+ plt.hist(df_fraud.amount, alpha=0.5, label='fraud',bins=100)
52
+ plt.hist(df_non_fraud.amount, alpha=0.5, label='nonfraud',bins=100)
53
+ plt.title("Histogram for fraud and nonfraud payments")
54
+ plt.ylim(0,10000)
55
+ plt.xlim(0,1000)
56
+ plt.legend()
57
+ plt.show()
58
+
59
+ # %% Preprocessing
60
+ print(data.zipcodeOri.nunique())
61
+ print(data.zipMerchant.nunique())
62
+
63
+ # dropping zipcodeori and zipMerchant since they have only one unique value
64
+ data_reduced = data.drop(['zipcodeOri','zipMerchant'],axis=1)
65
+
66
+ data_reduced.columns
67
+
68
+ # turning object columns type to categorical for later purposes
69
+ col_categorical = data_reduced.select_dtypes(include= ['object']).columns
70
+ for col in col_categorical:
71
+ data_reduced[col] = data_reduced[col].astype('category')
72
+
73
+ # it's usually better to turn the categorical values (customer, merchant, and category variables )
74
+ # into dummies because they have no relation in size(i.e. 5>4) but since they are too many (over 500k) the features will grow too many and
75
+ # it will take forever to train but here is the code below for turning categorical features into dummies
76
+ #data_reduced.loc[:,['customer','merchant','category']].astype('category')
77
+ #data_dum = pd.get_dummies(data_reduced.loc[:,['customer','merchant','category','gender']],drop_first=True) # dummies
78
+ #print(data_dum.info())
79
+
80
+ # categorical values ==> numeric values
81
+ data_reduced[col_categorical] = data_reduced[col_categorical].apply(lambda x: x.cat.codes)
82
+
83
+ # define X and y
84
+ X = data_reduced.drop(['fraud'],axis=1)
85
+ y = data['fraud']
86
+
87
+
88
+ # I won't do cross validation since we have a lot of instances
89
+ X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3,random_state=42,shuffle=True,stratify=y)
90
+
91
+ # %% Function for plotting ROC_AUC curve
92
+
93
+ def plot_roc_auc(y_test, preds):
94
+ '''
95
+ Takes actual and predicted(probabilities) as input and plots the Receiver
96
+ Operating Characteristic (ROC) curve
97
+ '''
98
+ fpr, tpr, threshold = roc_curve(y_test, preds)
99
+ roc_auc = auc(fpr, tpr)
100
+ plt.title('Receiver Operating Characteristic')
101
+ plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
102
+ plt.legend(loc = 'lower right')
103
+ plt.plot([0, 1], [0, 1],'r--')
104
+ plt.xlim([0, 1])
105
+ plt.ylim([0, 1])
106
+ plt.ylabel('True Positive Rate')
107
+ plt.xlabel('False Positive Rate')
108
+ plt.show()
109
+
110
+ # The base score should be better than predicting always non-fraduelent
111
+ print("Base score we must beat is: ",
112
+ df_non_fraud.fraud.count()/ np.add(df_non_fraud.fraud.count(),df_fraud.fraud.count()) * 100)
113
+
114
+
115
+ # %% K-ello Neigbors
116
+
117
+ knn = KNeighborsClassifier(n_neighbors=5,p=1)
118
+
119
+ knn.fit(X_train,y_train)
120
+ y_pred = knn.predict(X_test)
121
+
122
+ # High precision on fraudulent examples almost perfect score on non-fraudulent examples
123
+ print("Classification Report for K-Nearest Neighbours: \n", classification_report(y_test, y_pred))
124
+ print("Confusion Matrix of K-Nearest Neigbours: \n", confusion_matrix(y_test,y_pred))
125
+ plot_roc_auc(y_test, knn.predict_proba(X_test)[:,1])
126
+
127
+ # %% Random Forest Classifier
128
+
129
+ rf_clf = RandomForestClassifier(n_estimators=100,max_depth=8,random_state=42,
130
+ verbose=1,class_weight="balanced")
131
+
132
+ rf_clf.fit(X_train,y_train)
133
+ y_pred = rf_clf.predict(X_test)
134
+
135
+ # 98 % recall on fraudulent examples but low 24 % precision.
136
+ print("Classification Report for Random Forest Classifier: \n", classification_report(y_test, y_pred))
137
+ print("Confusion Matrix of Random Forest Classifier: \n", confusion_matrix(y_test,y_pred))
138
+ plot_roc_auc(y_test, rf_clf.predict_proba(X_test)[:,1])
139
+
140
+ # %% XG-Boost
141
+ XGBoost_CLF = xgb.XGBClassifier(max_depth=6, learning_rate=0.05, n_estimators=400,
142
+ objective="binary:hinge", booster='gbtree',
143
+ n_jobs=-1, nthread=None, gamma=0, min_child_weight=1, max_delta_step=0,
144
+ subsample=1, colsample_bytree=1, colsample_bylevel=1, reg_alpha=0, reg_lambda=1,
145
+ scale_pos_weight=1, base_score=0.5, random_state=42, verbosity=True)
146
+
147
+ XGBoost_CLF.fit(X_train,y_train)
148
+
149
+ y_pred = XGBoost_CLF.predict(X_test)
150
+
151
+ # reatively high precision and recall for fraudulent class
152
+ print("Classification Report for XGBoost: \n", classification_report(y_test, y_pred)) # Accuracy for XGBoost: 0.9963059088641371
153
+ print("Confusion Matrix of XGBoost: \n", confusion_matrix(y_test,y_pred))
154
+ plot_roc_auc(y_test, XGBoost_CLF.predict_proba(X_test)[:,1])
155
+
156
+ # %% Ensemble
157
+
158
+ estimators = [("KNN",knn),("rf",rf_clf),("xgb",XGBoost_CLF)]
159
+ ens = VotingClassifier(estimators=estimators, voting="soft",weights=[1,4,1])
160
+
161
+ ens.fit(X_train,y_train)
162
+ y_pred = ens.predict(X_test)
163
+
164
+
165
+ # Combined Random Forest model's recall and other models' precision thus this model
166
+ # ensures a higher recall with less false alarms (false positives)
167
+ print("Classification Report for Ensembled Models: \n", classification_report(y_test, y_pred)) # Accuracy for XGBoost: 0.9963059088641371
168
+ print("Confusion Matrix of Ensembled Models: \n", confusion_matrix(y_test,y_pred))
169
+ plot_roc_auc(y_test, ens.predict_proba(X_test)[:,1])