Spaces:
Running
Running
Batch processing and styling
Browse files- .streamlit/config.toml +6 -0
- app.py +70 -17
- assets/ALDi_logo.svg +3 -0
- constants.py +1 -0
.streamlit/config.toml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[theme]
|
| 2 |
+
primaryColor="#FF8000"
|
| 3 |
+
#backgroundColor="#FFFFFF"
|
| 4 |
+
#secondaryBackgroundColor="#F0F2F6"
|
| 5 |
+
#textColor="#262730"
|
| 6 |
+
#font="sans serif"
|
app.py
CHANGED
|
@@ -1,13 +1,22 @@
|
|
| 1 |
# Hint: this cheatsheet is magic! https://cheat-sheet.streamlit.app/
|
| 2 |
-
|
| 3 |
import constants
|
| 4 |
-
import numpy as np
|
| 5 |
import pandas as pd
|
| 6 |
import streamlit as st
|
|
|
|
| 7 |
from transformers import BertForSequenceClassification, AutoTokenizer
|
| 8 |
-
|
| 9 |
import altair as alt
|
| 10 |
from altair import X, Y, Scale
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
@st.cache_data
|
|
@@ -16,47 +25,91 @@ def convert_df(df):
|
|
| 16 |
return df.to_csv(index=None).encode("utf-8")
|
| 17 |
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
tab1, tab2 = st.tabs(["Input a Sentence", "Upload a File"])
|
| 26 |
|
| 27 |
with tab1:
|
| 28 |
-
sent = st.text_input(
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# TODO: Check if this is needed!
|
| 31 |
-
st.button("Submit")
|
| 32 |
|
| 33 |
if sent:
|
| 34 |
-
ALDi_score = compute_ALDi(sent)
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
with tab2:
|
| 38 |
file = st.file_uploader("Upload a file", type=["txt"])
|
| 39 |
if file is not None:
|
| 40 |
df = pd.read_csv(file, sep="\t", header=None)
|
| 41 |
df.columns = ["Sentence"]
|
| 42 |
-
|
| 43 |
-
df = pd.concat([df, df, df])
|
| 44 |
-
df = pd.concat([df, df, df])
|
| 45 |
-
df = pd.concat([df, df, df])
|
| 46 |
df.reset_index(drop=True, inplace=True)
|
| 47 |
|
| 48 |
# TODO: Run the model
|
| 49 |
-
df["ALDi"] = df["Sentence"].
|
| 50 |
|
| 51 |
# A horizontal rule
|
| 52 |
st.markdown("""---""")
|
| 53 |
|
| 54 |
chart = (
|
| 55 |
alt.Chart(df.reset_index())
|
| 56 |
-
.mark_area(color="
|
| 57 |
.encode(
|
| 58 |
x=X(field="index", title="Sentence Index"),
|
| 59 |
-
y=Y("ALDi", scale=Scale(domain=[0, 1]))
|
| 60 |
)
|
| 61 |
)
|
| 62 |
st.altair_chart(chart.interactive(), use_container_width=True)
|
|
|
|
| 1 |
# Hint: this cheatsheet is magic! https://cheat-sheet.streamlit.app/
|
|
|
|
| 2 |
import constants
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
import streamlit as st
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
from transformers import BertForSequenceClassification, AutoTokenizer
|
| 7 |
+
|
| 8 |
import altair as alt
|
| 9 |
from altair import X, Y, Scale
|
| 10 |
+
import base64
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
@st.cache_data
|
| 14 |
+
def render_svg(svg):
|
| 15 |
+
"""Renders the given svg string."""
|
| 16 |
+
b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8")
|
| 17 |
+
html = rf'<p align="center"> <img src="data:image/svg+xml;base64,{b64}"/> </p>'
|
| 18 |
+
c = st.container()
|
| 19 |
+
c.write(html, unsafe_allow_html=True)
|
| 20 |
|
| 21 |
|
| 22 |
@st.cache_data
|
|
|
|
| 25 |
return df.to_csv(index=None).encode("utf-8")
|
| 26 |
|
| 27 |
|
| 28 |
+
@st.cache_resource
|
| 29 |
+
def load_model(model_name):
|
| 30 |
+
model = BertForSequenceClassification.from_pretrained(model_name)
|
| 31 |
+
return model
|
| 32 |
|
| 33 |
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained(constants.MODEL_NAME)
|
| 35 |
+
model = load_model(constants.MODEL_NAME)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def compute_ALDi(sentences):
|
| 39 |
+
# TODO: Perform inference in batches
|
| 40 |
+
progress_text = "Computing ALDi..."
|
| 41 |
+
my_bar = st.progress(0, text=progress_text)
|
| 42 |
+
|
| 43 |
+
BATCH_SIZE = 4
|
| 44 |
+
output_logits = []
|
| 45 |
+
for first_index in range(0, len(sentences), BATCH_SIZE):
|
| 46 |
+
inputs = tokenizer(
|
| 47 |
+
sentences[first_index : first_index + BATCH_SIZE],
|
| 48 |
+
return_tensors="pt",
|
| 49 |
+
padding=True,
|
| 50 |
+
)
|
| 51 |
+
outputs = model(**inputs).logits.reshape(-1).tolist()
|
| 52 |
+
output_logits = output_logits + [max(min(o, 1), 0) for o in outputs]
|
| 53 |
+
my_bar.progress(
|
| 54 |
+
min((first_index + BATCH_SIZE) / len(sentences), 1), text=progress_text
|
| 55 |
+
)
|
| 56 |
+
my_bar.empty()
|
| 57 |
+
return output_logits
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
render_svg(open("assets/ALDi_logo.svg").read())
|
| 61 |
|
| 62 |
tab1, tab2 = st.tabs(["Input a Sentence", "Upload a File"])
|
| 63 |
|
| 64 |
with tab1:
|
| 65 |
+
sent = st.text_input(
|
| 66 |
+
"Arabic Sentence:", placeholder="Enter an Arabic sentence.", on_change=None
|
| 67 |
+
)
|
| 68 |
|
| 69 |
# TODO: Check if this is needed!
|
| 70 |
+
clicked = st.button("Submit")
|
| 71 |
|
| 72 |
if sent:
|
| 73 |
+
ALDi_score = compute_ALDi([sent])[0]
|
| 74 |
+
|
| 75 |
+
ORANGE_COLOR = "#FF8000"
|
| 76 |
+
fig, ax = plt.subplots(figsize=(8, 1))
|
| 77 |
+
fig.patch.set_facecolor("none")
|
| 78 |
+
ax.set_facecolor("none")
|
| 79 |
+
|
| 80 |
+
ax.spines["left"].set_color(ORANGE_COLOR)
|
| 81 |
+
ax.spines["bottom"].set_color(ORANGE_COLOR)
|
| 82 |
+
ax.tick_params(axis="x", colors=ORANGE_COLOR)
|
| 83 |
+
|
| 84 |
+
ax.spines[["right", "top"]].set_visible(False)
|
| 85 |
+
|
| 86 |
+
ax.barh(y=[0], width=[ALDi_score], color=ORANGE_COLOR)
|
| 87 |
+
ax.set_xlim(0, 1)
|
| 88 |
+
ax.set_ylim(-1, 1)
|
| 89 |
+
ax.set_title(f"ALDi score is: {round(ALDi_score, 3)}", color=ORANGE_COLOR)
|
| 90 |
+
ax.get_yaxis().set_visible(False)
|
| 91 |
+
ax.set_xlabel("ALDi score", color=ORANGE_COLOR)
|
| 92 |
+
st.pyplot(fig)
|
| 93 |
|
| 94 |
with tab2:
|
| 95 |
file = st.file_uploader("Upload a file", type=["txt"])
|
| 96 |
if file is not None:
|
| 97 |
df = pd.read_csv(file, sep="\t", header=None)
|
| 98 |
df.columns = ["Sentence"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
df.reset_index(drop=True, inplace=True)
|
| 100 |
|
| 101 |
# TODO: Run the model
|
| 102 |
+
df["ALDi"] = compute_ALDi(df["Sentence"].tolist())
|
| 103 |
|
| 104 |
# A horizontal rule
|
| 105 |
st.markdown("""---""")
|
| 106 |
|
| 107 |
chart = (
|
| 108 |
alt.Chart(df.reset_index())
|
| 109 |
+
.mark_area(color="darkorange", opacity=0.5)
|
| 110 |
.encode(
|
| 111 |
x=X(field="index", title="Sentence Index"),
|
| 112 |
+
y=Y("ALDi", scale=Scale(domain=[0, 1])),
|
| 113 |
)
|
| 114 |
)
|
| 115 |
st.altair_chart(chart.interactive(), use_container_width=True)
|
assets/ALDi_logo.svg
ADDED
|
|
constants.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
CHOICE_TEXT = "Input Text"
|
| 2 |
CHOICE_FILE = "Upload File"
|
| 3 |
TITLE = "ALDi: Arabic Level of Dialectness"
|
|
|
|
|
|
| 1 |
CHOICE_TEXT = "Input Text"
|
| 2 |
CHOICE_FILE = "Upload File"
|
| 3 |
TITLE = "ALDi: Arabic Level of Dialectness"
|
| 4 |
+
MODEL_NAME = "AMR-KELEG/toy_regression_model"
|