Annikaijak's picture
Update app.py
fafc488 verified
# Loading packages
from datetime import datetime, timedelta
import joblib
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import warnings
import hopsworks
import streamlit as st
import json
import os
import seaborn as sns
import time
import random
from sklearn.preprocessing import StandardScaler
# Configuring the web page and setting the page title and icon
st.set_page_config(
page_title='Parking Occupacy Detection',
page_icon='🅿️',
initial_sidebar_state='expanded')
# Ignoring filtering warnings
warnings.filterwarnings("ignore")
# Setting the title and adding text
st.title('Parking Occupancy Detection')
# Defining functions
def fill_nan_with_zero(value):
if pd.isna(value):
return 0
else:
return value
# Getting current time and yesterday
now = datetime.now() + timedelta(hours=2)
yesterday = now - timedelta(days=1)
# Defining scaler
scaler = StandardScaler()
# Creating tabs for the different features of the application
tab1,tab2 = st.tabs(['Parking place near Building', 'Parking place near Bikelane'])
with tab1:
# Logging in to Hopsworks and loading the feature store
project = hopsworks.login(project = "alaborg", api_key_value=os.environ['HOPSWORKS_API_KEY'])
fs = project.get_feature_store()
# Function to load the building models
@st.cache_data()
def get_building_mag_model(project=project):
mr = project.get_model_registry()
building_mag_model = mr.get_model("building_mag_hist_model", version = 2)
building_mag_model_dir = building_mag_model.download()
return joblib.load(building_mag_model_dir + "/building_mag_hist_model.pkl")
# Retrieving model
building_mag_hist_model = get_building_mag_model()
@st.cache_data()
def get_building_rad_model(project=project):
mr = project.get_model_registry()
building_rad_model = mr.get_model("building_rad_hist_model", version = 2)
building_rad_model_dir = building_rad_model.download()
return joblib.load(building_rad_model_dir + "/building_rad_hist_model.pkl")
# Retrieving model
building_rad_hist_model = get_building_rad_model()
# Loading the feature group with latest data for building
new_building_fg = fs.get_feature_group(name = 'new_building_fg', version = 1)
# Function to loading the feature group with latest data for building as a dataset
@st.cache_data()
def retrieve_building(feature_group=new_building_fg):
new_building_fg = feature_group.select_all()
df_building_new = new_building_fg.read(read_options={"use_hive": True})
return df_building_new
# Retrieving building data
building_new = retrieve_building()
col1, col2 = st.columns(2)
with col1:
st.subheader("Magnetic field prediction")
# Making the predictions and getting the latest data for magnetic field data
building_mag_prediction_data = building_new[['time', 'x', 'y', 'z', 'temperature', 'et0_fao_evapotranspiration']]
building_mag_prediction_data['et0_fao_evapotranspiration'] = building_mag_prediction_data['et0_fao_evapotranspiration'].apply(fill_nan_with_zero)
building_mag_most_recent_prediction = building_mag_prediction_data[['x', 'y', 'z', 'temperature', 'et0_fao_evapotranspiration']]
building_mag_most_recent_prediction = building_mag_hist_model.predict(building_mag_most_recent_prediction)
building_mag_prediction_data['Status'] = building_mag_most_recent_prediction
building_mag_prediction_data['Status'].replace(['detection', 'no_detection'], ['Vehicle detected', 'No vehicle detected'], inplace=True)
building_mag_prediction_data = building_mag_prediction_data.rename(columns={'time': 'Time'})
building_mag_prediction_data = building_mag_prediction_data.set_index(['Time'])
st.dataframe(building_mag_prediction_data[['Status']].tail(3))
with col2:
st.subheader("Radar prediction")
# Making the predictions and getting the latest data for radar data
building_rad_prediction_data = building_new[['time', 'radar_0', 'radar_1', 'radar_2', 'radar_3', 'radar_4', 'radar_5', 'radar_6', 'radar_7', 'temperature', 'et0_fao_evapotranspiration']]
building_rad_prediction_data['et0_fao_evapotranspiration'] = building_rad_prediction_data['et0_fao_evapotranspiration'].apply(fill_nan_with_zero)
building_rad_most_recent_prediction = building_rad_prediction_data[['radar_0', 'radar_1', 'radar_2', 'radar_3', 'radar_4', 'radar_5', 'radar_6', 'radar_7', 'temperature', 'et0_fao_evapotranspiration']]
building_rad_most_recent_prediction = building_rad_hist_model.predict(building_rad_most_recent_prediction)
building_rad_prediction_data['Status'] = building_rad_most_recent_prediction
building_rad_prediction_data['Status'].replace(['detection', 'no_detection'], ['Vehicle detected', 'No vehicle detected'], inplace=True)
building_rad_prediction_data = building_rad_prediction_data.rename(columns={'time': 'Time'})
building_rad_prediction_data = building_rad_prediction_data.set_index(['Time'])
st.dataframe(building_rad_prediction_data[['Status']].tail(3))
# Update button
if st.button("Update Building"):
# Clear cached data
st.cache_data.clear()
# Immediately rerun the application
st.experimental_rerun()
# Creating plot for latest magnetic field data for building
# Filtering building_new for specific time
building_mag_specific_time_range = building_new[(building_new['time'] >= yesterday) & (building_new['time'] <= now)]
# Defining magnetic field data to normalise
building_mag_to_normalize = building_mag_specific_time_range[['x', 'y', 'z']]
# Applying StandardScaler
normalized_building_mag = scaler.fit_transform(building_mag_to_normalize)
# Adding normalized data back to the DataFrame
building_mag_specific_time_range[['x', 'y', 'z']] = normalized_building_mag
# Streamlit plotting
st.subheader('Normalized values of magnetic field data from yesterday to today')
# Converting the time column to string for better readability in Streamlit plots
building_mag_specific_time_range['time'] = building_mag_specific_time_range['time'].astype(str)
# Plotting using Streamlit's line chart
st.line_chart(building_mag_specific_time_range.set_index('time')[['x', 'y', 'z']])
# Creating plot for latest radar data for building
# Filtering building_new for specific time
building_rad_specific_time_range = building_new[(building_new['time'] >= yesterday) & (building_new['time'] <= now)]
# Defining magnetic field data to normalise
building_rad_to_normalize = building_rad_specific_time_range[['radar_0', 'radar_1', 'radar_2', 'radar_3', 'radar_4', 'radar_5', 'radar_6', 'radar_7']]
# Applying StandardScaler
normalized_building_rad = scaler.fit_transform(building_rad_to_normalize)
# Adding normalized data back to the DataFrame
building_rad_specific_time_range[['radar_0', 'radar_1', 'radar_2', 'radar_3', 'radar_4', 'radar_5', 'radar_6', 'radar_7']] = normalized_building_rad
# Streamlit plotting
st.subheader('Normalized values of radar data from yesterday to today')
# Converting the time column to string for better readability in Streamlit plots
building_rad_specific_time_range['time'] = building_rad_specific_time_range['time'].astype(str)
# Plotting using Streamlit's line chart
st.line_chart(building_rad_specific_time_range.set_index('time')[['radar_0', 'radar_1', 'radar_2', 'radar_3', 'radar_4', 'radar_5', 'radar_6', 'radar_7']])
with tab2:
# Function to load the bikelane models
@st.cache_data()
def get_bikelane_mag_model(project=project):
mr = project.get_model_registry()
bikelane_mag_model = mr.get_model("bikelane_mag_hist_model", version = 2)
bikelane_mag_model_dir = bikelane_mag_model.download()
return joblib.load(bikelane_mag_model_dir + "/bikelane_mag_hist_model.pkl")
# Retrieving model
bikelane_mag_hist_model = get_bikelane_mag_model()
@st.cache_data()
def get_bikelane_rad_model(project=project):
mr = project.get_model_registry()
bikelane_rad_model = mr.get_model("bikelane_rad_hist_model", version = 2)
bikelane_rad_model_dir = bikelane_rad_model.download()
return joblib.load(bikelane_rad_model_dir + "/bikelane_rad_hist_model.pkl")
# Retrieving model
bikelane_rad_hist_model = get_bikelane_rad_model()
# Loading the feature group with latest data for bikelane
new_bikelane_fg = fs.get_feature_group(name = 'new_bikelane_fg', version = 1)
# Function to loading the feature group with latest data for bikelane as a dataset
@st.cache_data()
def retrieve_bikelane(feature_group=new_bikelane_fg):
new_bikelane_fg = feature_group.select_all()
df_bikelane_new = new_bikelane_fg.read(read_options={"use_hive": True})
return df_bikelane_new
# Retrieving bikelane data
bikelane_new = retrieve_bikelane()
col1, col2 = st.columns(2)
with col1:
st.subheader("Magnetic field prediction")
# Making the predictions and getting the latest data for magnetic field data
bikelane_mag_prediction_data = bikelane_new[['time', 'x', 'y', 'z', 'temperature', 'et0_fao_evapotranspiration']]
bikelane_mag_prediction_data['et0_fao_evapotranspiration'] = bikelane_mag_prediction_data['et0_fao_evapotranspiration'].apply(fill_nan_with_zero)
bikelane_mag_most_recent_prediction = bikelane_mag_prediction_data[['x', 'y', 'z', 'temperature', 'et0_fao_evapotranspiration']]
bikelane_mag_most_recent_prediction = bikelane_mag_hist_model.predict(bikelane_mag_most_recent_prediction)
bikelane_mag_prediction_data['Status'] = bikelane_mag_most_recent_prediction
bikelane_mag_prediction_data['Status'].replace(['detection', 'no_detection'], ['Vehicle detected', 'No vehicle detected'], inplace=True)
bikelane_mag_prediction_data = bikelane_mag_prediction_data.rename(columns={'time': 'Time'})
bikelane_mag_prediction_data = bikelane_mag_prediction_data.set_index(['Time'])
st.dataframe(bikelane_mag_prediction_data[['Status']].tail(3))
with col2:
st.subheader("Radar prediction")
# Making the predictions and getting the latest data for radar data
bikelane_rad_prediction_data = bikelane_new[['time', 'radar_0', 'radar_1', 'radar_2', 'radar_3', 'radar_4', 'radar_5', 'radar_6', 'radar_7', 'temperature', 'et0_fao_evapotranspiration']]
bikelane_rad_prediction_data['et0_fao_evapotranspiration'] = bikelane_rad_prediction_data['et0_fao_evapotranspiration'].apply(fill_nan_with_zero)
bikelane_rad_most_recent_prediction = bikelane_rad_prediction_data[['radar_0', 'radar_1', 'radar_2', 'radar_3', 'radar_4', 'radar_5', 'radar_6', 'radar_7', 'temperature', 'et0_fao_evapotranspiration']]
bikelane_rad_most_recent_prediction = bikelane_rad_hist_model.predict(bikelane_rad_most_recent_prediction)
bikelane_rad_prediction_data['Status'] = bikelane_rad_most_recent_prediction
bikelane_rad_prediction_data['Status'].replace(['detection', 'no_detection'], ['Vehicle detected', 'No vehicle detected'], inplace=True)
bikelane_rad_prediction_data = bikelane_rad_prediction_data.rename(columns={'time': 'Time'})
bikelane_rad_prediction_data = bikelane_rad_prediction_data.set_index(['Time'])
st.dataframe(bikelane_rad_prediction_data[['Status']].tail(3))
# Update button
if st.button("Update Bikelane"):
# Clear cached data
st.cache_data.clear()
# Immediately rerun the application
st.experimental_rerun()
# Creating plot for latest magnetic field data for bikelane
# Filtering bikelane_new for specific time
bikelane_mag_specific_time_range = bikelane_new[(bikelane_new['time'] >= yesterday) & (bikelane_new['time'] <= now)]
# Defining magnetic field data to normalise
bikelane_mag_to_normalize = bikelane_mag_specific_time_range[['x', 'y', 'z']]
# Applying StandardScaler
normalized_bikelane_mag = scaler.fit_transform(bikelane_mag_to_normalize)
# Adding normalized data back to the DataFrame
bikelane_mag_specific_time_range[['x', 'y', 'z']] = normalized_bikelane_mag
# Streamlit plotting
st.subheader('Normalized values of magnetic field data from yesterday to today')
# Converting the time column to string for better readability in Streamlit plots
bikelane_mag_specific_time_range['time'] = bikelane_mag_specific_time_range['time'].astype(str)
# Plotting using Streamlit's line chart
st.line_chart(bikelane_mag_specific_time_range.set_index('time')[['x', 'y', 'z']])
# Creating plot for latest radar data for bikelane
# Filtering bikelane_new for specific time
bikelane_rad_specific_time_range = bikelane_new[(bikelane_new['time'] >= yesterday) & (bikelane_new['time'] <= now)]
# Defining magnetic field data to normalise
bikelane_rad_to_normalize = bikelane_rad_specific_time_range[['radar_0', 'radar_1', 'radar_2', 'radar_3', 'radar_4', 'radar_5', 'radar_6', 'radar_7']]
# Applying StandardScaler
normalized_bikelane_rad = scaler.fit_transform(bikelane_rad_to_normalize)
# Adding normalized data back to the DataFrame
bikelane_rad_specific_time_range[['radar_0', 'radar_1', 'radar_2', 'radar_3', 'radar_4', 'radar_5', 'radar_6', 'radar_7']] = normalized_bikelane_rad
# Streamlit plotting
st.subheader('Normalized values of radar data from yesterday to today')
# Converting the time column to string for better readability in Streamlit plots
bikelane_rad_specific_time_range['time'] = bikelane_rad_specific_time_range['time'].astype(str)
# Plotting using Streamlit's line chart
st.line_chart(bikelane_rad_specific_time_range.set_index('time')[['radar_0', 'radar_1', 'radar_2', 'radar_3', 'radar_4', 'radar_5', 'radar_6', 'radar_7']])