import subprocess subprocess.run(['sh', './spaces.sh']) import spaces @spaces.GPU(required=True) def install_dependencies(): subprocess.run(['sh', './flashattn.sh']) install_dependencies() import os os.environ['PYTORCH_NVML_BASED_CUDA_CHECK'] = '1' os.environ['TORCH_LINALG_PREFER_CUSOLVER'] = '1' os.environ['PYTORCH_ALLOC_CONF'] = 'expandable_segments:True,pinned_use_background_threads:True' os.environ["SAFETENSORS_FAST_GPU"] = "1" os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1' import torch torch.backends.cuda.matmul.allow_tf32 = False # torch 2.8 torch.backends.cudnn.allow_tf32 = False # torch 2.8 torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False #torch.backends.fp32_precision = "ieee" torch 2.9 #torch.backends.cuda.matmul.fp32_precision = "ieee" torch 2.9 #torch.backends.cudnn.fp32_precision = "ieee" torch 2.9 #torch.backends.cudnn.conv.fp32_precision = "ieee" torch 2.9 #torch.backends.cudnn.rnn.fp32_precision = "ieee" torch 2.9 torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False torch.backends.cuda.preferred_blas_library="cublas" torch.backends.cuda.preferred_linalg_library="cusolver" torch.set_float32_matmul_precision("highest") import json import gradio as gr import numpy as np import random import datetime import threading import io from PIL import Image import imageio.v3 as iio # For HDR import pillow_avif import cv2 from google.oauth2 import service_account from google.cloud import storage import torch torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False torch.backends.cudnn.allow_tf32 = False torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False torch.backends.cuda.preferred_blas_library="cublas" torch.backends.cuda.preferred_linalg_library="cusolver" torch.set_float32_matmul_precision("highest") from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, AutoencoderKL from image_gen_aux import UpscaleWithModel GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME") GCS_SA_KEY = os.getenv("GCS_SA_KEY") # The full JSON key content as a string gcs_client = None print(GCS_BUCKET_NAME) if GCS_SA_KEY: print('Got key length: ',len(GCS_SA_KEY)) if GCS_SA_KEY and GCS_BUCKET_NAME: try: credentials_info = json.loads(GCS_SA_KEY) # New, safer way credentials = service_account.Credentials.from_service_account_info(credentials_info) gcs_client = storage.Client(credentials=credentials) print("✅ GCS Client initialized successfully.") except Exception as e: print(f"❌ Failed to initialize GCS client: {e}") def upload_to_gcs(image_bytes, filename, content_type): if not gcs_client: print("⚠️ GCS client not initialized. Skipping upload.") return if image_bytes is None: print(f"⚠️ No image bytes for {filename}. Skipping upload.") return try: print(f"--> Starting GCS upload for {filename}...") bucket = gcs_client.bucket(GCS_BUCKET_NAME) blob = bucket.blob(f"stablediff/{filename}") # We already have the bytes, just upload them blob.upload_from_string(image_bytes, content_type=content_type) print(f"✅ Successfully uploaded {filename} to GCS.") except Exception as e: print(f"❌ An error occurred during GCS upload: {e}") def srgb_to_linear_tensor(img_tensor_srgb): """Converts a PyTorch sRGB tensor [0, 1] to a linear tensor.""" # Assumes input is in [0, 1] range linear_mask = (img_tensor_srgb <= 0.04045).float() non_linear_mask = (img_tensor_srgb > 0.04045).float() linear_part = img_tensor_srgb / 12.92 non_linear_part = torch.pow((img_tensor_srgb + 0.055) / 1.055, 2.4) img_linear = (linear_part * linear_mask) + (non_linear_part * non_linear_mask) return img_linear def linear_to_srgb_tensor(img_tensor_linear): """Converts a PyTorch linear tensor [0, 1] to sRGB.""" # Clamp to prevent negative values from torch.pow img_tensor_linear = img_tensor_linear.clamp(min=0.0) srgb_mask = (img_tensor_linear <= 0.0031308).float() non_srgb_mask = (img_tensor_linear > 0.0031308).float() srgb_part = img_tensor_linear * 12.92 non_srgb_part = 1.055 * torch.pow(img_tensor_linear, 1.0/2.4) - 0.055 img_srgb = (srgb_part * srgb_mask) + (non_srgb_part * non_srgb_mask) return img_srgb.clamp(0.0, 1.0) def srgb_to_linear(tensor_srgb): """Converts a batched sRGB PyTorch tensor [0, 1] to a linear tensor.""" return torch.where( tensor_srgb <= 0.04045, tensor_srgb / 12.92, ((tensor_srgb + 0.055) / 1.055).pow(2.4) ) def create_hdr_avif_bytes(image_tensor_fp32): """ Converts a float32 sRGB tensor [-1, 1] to 10-bit HDR AVIF bytes. """ if image_tensor_fp32 is None: return None try: # 1. Convert sRGB [-1, 1] tensor to Linear [0, 1] tensor srgb_tensor_0_1 = (image_tensor_fp32 / 2 + 0.5).clamp(0, 1) linear_tensor = srgb_to_linear_tensor(srgb_tensor_0_1) # 2. Convert linear float tensor to 16-bit uint numpy array [H, W, 3] # We use 16-bit as a container for our 10-bit data linear_tensor_16bit = (linear_tensor.clamp(0, 1) * 65535.0).round() hdr_16bit_array = linear_tensor_16bit.to(torch.uint16).cpu().permute(0, 2, 3, 1).numpy()[0] # 3. Save to bytes using imageio, forcing 10-bit YUV444 format for HDR return iio.imwrite( "", hdr_16bit_array, format_hint=".avif", codec="av1", # Use AV1 codec out_pixelformat="yuv444p10le" # Force 10-bit, 4:4:4 chroma ) except Exception as e: print(f"❌ Failed to encode HDR AVIF: {e}") return None device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") from diffusers.models.attention_processor import AttnProcessor2_0 from kernels import get_kernel fa3_kernel = get_kernel("kernels-community/flash-attn3") # Or vllm-flash-attn3 class FlashAttentionProcessor(AttnProcessor2_0): def __call__( self, attn, hidden_states, encoder_hidden_states=None, # This will be present for cross-attention attention_mask=None, temb=None, # This might be present in some attention mechanisms, pass through if not used directly **kwargs, ): # Determine if it's self-attention or cross-attention # For self-attention, encoder_hidden_states is None or identical to hidden_states is_cross_attention = encoder_hidden_states is not None and encoder_hidden_states.shape[1] != hidden_states.shape[1] # SD3.5 uses DiT, where hidden_states are often 3D (B, Seq, Dim) # However, attention can be within a transformer block which might internally reshape. # Ensure your inputs (query, key, value) are properly shaped for the kernel. # The kernel expects (Batch, Heads, Sequence, Dim_Head) query = attn.to_q(hidden_states) if is_cross_attention: key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) else: # Self-attention key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) scale = attn.scale query = query * scale b, t, c = query.shape # B=batch_size, T=sequence_length, C=embedding_dim h = attn.heads d = c // h # dim_per_head # Reshape to (Batch, Heads, Sequence, Dim_Head) for Flash Attention kernel q_reshaped = query.reshape(b, t, h, d).permute(0, 2, 1, 3) k_reshaped = key.reshape(b, t, h, d).permute(0, 2, 1, 3) v_reshaped = value.reshape(b, t, h, d).permute(0, 2, 1, 3) out_reshaped = torch.empty_like(q_reshaped) # Call the Flash Attention kernel fa3_kernel.attention(q_reshaped, k_reshaped, v_reshaped, out_reshaped) # Reshape output back to (Batch, Sequence, Heads * Dim_Head) out = out_reshaped.permute(0, 2, 1, 3).reshape(b, t, c) out = attn.to_out(out) return out @spaces.GPU(duration=120) def compile_transformer(): with spaces.aoti_capture(pipe.transformer) as call: pipe("A majestic, ancient Egyptian Sphinx stands sentinel in a large, clear pool under a bright, golden desert sun. Around its weathered stone base, several sleek, playful dolphins gracefully navigate the turquoise waters. The surrounding environment features lush, exotic papyrus plants and distant pyramids under a cloudless sky, conveying a sense of timeless wonder and serene majesty.") exported = torch.export.export( pipe.transformer, args=call.args, kwargs=call.kwargs, ) return spaces.aoti_compile(exported) def load_model(): vae = AutoencoderKL.from_pretrained( "ford442/stable-diffusion-3.5-large-bf16", subfolder="vae", torch_dtype=torch.float32 # Load VAE in full precision ) pipe = StableDiffusion3Pipeline.from_pretrained( "ford442/stable-diffusion-3.5-large-bf16", trust_remote_code=True, transformer=None, # Load transformer separately use_safetensors=True, #vae=vae ) ll_transformer=SD3Transformer2DModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='transformer').to(device, dtype=torch.bfloat16) pipe.transformer=ll_transformer pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors") pipe.to(device=device, dtype=torch.bfloat16) pipe.vae=vae.to(device=device) upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(device) return pipe, upscaler_2 pipe, upscaler_2 = load_model() fa_processor = FlashAttentionProcessor() for name, module in pipe.transformer.named_modules(): if isinstance(module, AttnProcessor2_0): module.processor = fa_processor #compiled_transformer = compile_transformer() #spaces.aoti_apply(compiled_transformer, pipe.transformer) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 4096 @spaces.GPU(duration=45) def generate_images_30(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)): seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) print('-- generating image --') torch.cuda.empty_cache() torch.cuda.reset_peak_memory_stats() sd_image = pipe( prompt=prompt, prompt_2=prompt, prompt_3=prompt, negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3, guidance_scale=guidance, num_inference_steps=steps, width=width, height=height, generator=generator, max_sequence_length=384, output_type="latent" # <-- Get latents, not an image ).images # 2. Manually decode with our float32 VAE latents_fp32 = sd_image.to(torch.float32) latents_fp32 = 1 / pipe.vae.config.scaling_factor * latents_fp32 with torch.no_grad(): # This is our high-precision sRGB tensor in range [-1, 1] image_tensor_fp32 = pipe.vae.decode(latents_fp32).sample print('-- got fp32 image tensor --') # 3. Create 8-bit PIL Image from the tensor (for Gradio display) srgb_tensor_0_1 = (image_tensor_fp32 / 2 + 0.5).clamp(0, 1) srgb_numpy_8bit = (srgb_tensor_0_1.cpu().permute(0, 2, 3, 1).float().numpy()[0] * 255).round().astype("uint8") sd_image_pil_8bit = Image.fromarray(srgb_numpy_8bit) print('-- got 8-bit PIL image for display --') # 4. Create 16-bit PIL Image from the same tensor (for Upscaler) # Pillow 10+ can create an 'RGB' mode image from a uint16 array srgb_numpy_16bit = (srgb_tensor_0_1.cpu().permute(0, 2, 3, 1).float().numpy()[0] * 65535.0).round().astype("uint16") sd_image_pil_16bit = Image.fromarray(srgb_numpy_16bit) print('-- got 16-bit PIL image for upscaling --') # 5. Run the 16-bit upscaling (4x) # We feed the high-precision 16-bit PIL image to the upscaler with torch.no_grad(): upscale_1 = upscaler_2(sd_image_pil_16bit, tiling=True, tile_width=256, tile_height=256) upscale_2 = upscaler_2(upscale_1, tiling=True, tile_width=256, tile_height=256) print('-- got 4K 16-bit upscaled PIL image --') torch.cuda.empty_cache() # 6. Convert the 4K 16-bit PIL back to a float32 tensor upscaled_16bit_numpy = np.array(upscale_2) upscaled_srgb_tensor = torch.from_numpy(upscaled_16bit_numpy).permute(2, 0, 1).unsqueeze(0).to(device, dtype=torch.float32) / 65535.0 # 7. Create 10-bit HDR AVIF bytes from the 4K tensor (for GCS) # We pass the upscaled sRGB tensor, which create_hdr_avif_bytes will convert to linear # Note: We must convert the tensor from [0, 1] range back to [-1, 1] for create_hdr_avif_bytes upscaled_tensor_neg1_1 = (upscaled_srgb_tensor * 2.0 - 1.0).clamp(-1, 1) upscaled_avif_bytes = create_hdr_avif_bytes(upscaled_tensor_neg1_1) print('-- got 4K HDR AVIF bytes for upload --') # 8. Return the 8-bit PIL (for display) and the 4K AVIF bytes (for upload) return sd_image_pil_8bit, upscaled_avif_bytes, prompt @spaces.GPU(duration=70) def generate_images_60(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)): seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) print('-- generating image --') torch.cuda.empty_cache() torch.cuda.reset_peak_memory_stats() sd_image = pipe( prompt=prompt, prompt_2=prompt, prompt_3=prompt, negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3, guidance_scale=guidance, num_inference_steps=steps, width=width, height=height, generator=generator, max_sequence_length=384, output_type="latent" # <-- Get latents, not an image ).images # 2. Manually decode with our float32 VAE latents_fp32 = sd_image.to(torch.float32) latents_fp32 = 1 / pipe.vae.config.scaling_factor * latents_fp32 with torch.no_grad(): # This is our high-precision sRGB tensor in range [-1, 1] image_tensor_fp32 = pipe.vae.decode(latents_fp32).sample print('-- got fp32 image tensor --') # 3. Create 8-bit PIL Image from the tensor (for Gradio display) srgb_tensor_0_1 = (image_tensor_fp32 / 2 + 0.5).clamp(0, 1) srgb_numpy_8bit = (srgb_tensor_0_1.cpu().permute(0, 2, 3, 1).float().numpy()[0] * 255).round().astype("uint8") sd_image_pil_8bit = Image.fromarray(srgb_numpy_8bit) print('-- got 8-bit PIL image for display --') # 4. Create 16-bit PIL Image from the same tensor (for Upscaler) # Pillow 10+ can create an 'RGB' mode image from a uint16 array srgb_numpy_16bit = (srgb_tensor_0_1.cpu().permute(0, 2, 3, 1).float().numpy()[0] * 65535.0).round().astype("uint16") sd_image_pil_16bit = Image.fromarray(srgb_numpy_16bit, mode='RGB') print('-- got 16-bit PIL image for upscaling --') # 5. Run the 16-bit upscaling (4x) # We feed the high-precision 16-bit PIL image to the upscaler with torch.no_grad(): upscale_1 = upscaler_2(sd_image_pil_16bit, tiling=True, tile_width=256, tile_height=256) upscale_2 = upscaler_2(upscale_1, tiling=True, tile_width=256, tile_height=256) print('-- got 4K 16-bit upscaled PIL image --') torch.cuda.empty_cache() # 6. Convert the 4K 16-bit PIL back to a float32 tensor upscaled_16bit_numpy = np.array(upscale_2) upscaled_srgb_tensor = torch.from_numpy(upscaled_16bit_numpy).permute(2, 0, 1).unsqueeze(0).to(device, dtype=torch.float32) / 65535.0 # 7. Create 10-bit HDR AVIF bytes from the 4K tensor (for GCS) # We pass the upscaled sRGB tensor, which create_hdr_avif_bytes will convert to linear # Note: We must convert the tensor from [0, 1] range back to [-1, 1] for create_hdr_avif_bytes upscaled_tensor_neg1_1 = (upscaled_srgb_tensor * 2.0 - 1.0).clamp(-1, 1) upscaled_avif_bytes = create_hdr_avif_bytes(upscaled_tensor_neg1_1) print('-- got 4K HDR AVIF bytes for upload --') # 8. Return the 8-bit PIL (for display) and the 4K AVIF bytes (for upload) return sd_image_pil_8bit, upscaled_avif_bytes, prompt @spaces.GPU(duration=120) def generate_images_110(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)): seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) print('-- generating image --') torch.cuda.empty_cache() torch.cuda.reset_peak_memory_stats() sd_image = pipe( prompt=prompt, prompt_2=prompt, prompt_3=prompt, negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3, guidance_scale=guidance, num_inference_steps=steps, width=width, height=height, generator=generator, max_sequence_length=384, output_type="latent" # <-- Get latents, not an image ).images # 2. Manually decode with our float32 VAE latents_fp32 = sd_image.to(torch.float32) latents_fp32 = 1 / pipe.vae.config.scaling_factor * latents_fp32 with torch.no_grad(): # This is our high-precision sRGB tensor in range [-1, 1] image_tensor_fp32 = pipe.vae.decode(latents_fp32).sample print('-- got fp32 image tensor --') # 3. Create 8-bit PIL Image from the tensor (for Gradio display) srgb_tensor_0_1 = (image_tensor_fp32 / 2 + 0.5).clamp(0, 1) srgb_numpy_8bit = (srgb_tensor_0_1.cpu().permute(0, 2, 3, 1).float().numpy()[0] * 255).round().astype("uint8") sd_image_pil_8bit = Image.fromarray(srgb_numpy_8bit) print('-- got 8-bit PIL image for display --') # 4. Create 16-bit PIL Image from the same tensor (for Upscaler) # Pillow 10+ can create an 'RGB' mode image from a uint16 array srgb_numpy_16bit = (srgb_tensor_0_1.cpu().permute(0, 2, 3, 1).float().numpy()[0] * 65535.0).round().astype("uint16") sd_image_pil_16bit = Image.fromarray(srgb_numpy_16bit, mode='RGB') print('-- got 16-bit PIL image for upscaling --') # 5. Run the 16-bit upscaling (4x) # We feed the high-precision 16-bit PIL image to the upscaler with torch.no_grad(): upscale_1 = upscaler_2(sd_image_pil_16bit, tiling=True, tile_width=256, tile_height=256) upscale_2 = upscaler_2(upscale_1, tiling=True, tile_width=256, tile_height=256) print('-- got 4K 16-bit upscaled PIL image --') torch.cuda.empty_cache() # 6. Convert the 4K 16-bit PIL back to a float32 tensor upscaled_16bit_numpy = np.array(upscale_2) upscaled_srgb_tensor = torch.from_numpy(upscaled_16bit_numpy).permute(2, 0, 1).unsqueeze(0).to(device, dtype=torch.float32) / 65535.0 # 7. Create 10-bit HDR AVIF bytes from the 4K tensor (for GCS) # We pass the upscaled sRGB tensor, which create_hdr_avif_bytes will convert to linear # Note: We must convert the tensor from [0, 1] range back to [-1, 1] for create_hdr_avif_bytes upscaled_tensor_neg1_1 = (upscaled_srgb_tensor * 2.0 - 1.0).clamp(-1, 1) upscaled_avif_bytes = create_hdr_avif_bytes(upscaled_tensor_neg1_1) print('-- got 4K HDR AVIF bytes for upload --') # 8. Return the 8-bit PIL (for display) and the 4K AVIF bytes (for upload) return sd_image_pil_8bit, upscaled_avif_bytes, prompt def run_inference_and_upload_30(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)): # 1. Get the 8-bit PIL (for display) and 4K AVIF bytes (for upload) sd_image_pil, upscaled_avif_bytes, expanded_prompt = generate_images_30(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress) if save_consent: print("✅ User consented to save. Preparing uploads...") timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") # Define filenames sd_filename_png = f"sd35ll_{timestamp}.png" sd_filename_avif = f"sd35ll_4K_hdr_{timestamp}.avif" # 2. Convert the 8-bit PIL image to PNG bytes for upload img_byte_arr = io.BytesIO() sd_image_pil.save(img_byte_arr, format='PNG', optimize=False, compress_level=0) sd_png_bytes = img_byte_arr.getvalue() # 3. Start threads to upload both # Upload the 1K 8-bit PNG png_thread = threading.Thread(target=upload_to_gcs, args=(sd_png_bytes, sd_filename_png, "image/png")) # Upload the 4K 10-bit HDR AVIF avif_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_avif_bytes, sd_filename_avif, "image/avif")) png_thread.start() avif_thread.start() else: print("ℹ️ User did not consent to save. Skipping upload.") # 4. Return the 8-bit PIL image to Gradio return sd_image_pil, expanded_prompt def run_inference_and_upload_60(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)): # 1. Get the 8-bit PIL (for display) and 4K AVIF bytes (for upload) sd_image_pil, upscaled_avif_bytes, expanded_prompt = generate_images_60(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress) if save_consent: print("✅ User consented to save. Preparing uploads...") timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") # Define filenames sd_filename_png = f"sd35ll_{timestamp}.png" sd_filename_avif = f"sd35ll_4K_hdr_{timestamp}.avif" # 2. Convert the 8-bit PIL image to PNG bytes for upload img_byte_arr = io.BytesIO() sd_image_pil.save(img_byte_arr, format='PNG', optimize=False, compress_level=0) sd_png_bytes = img_byte_arr.getvalue() # 3. Start threads to upload both # Upload the 1K 8-bit PNG png_thread = threading.Thread(target=upload_to_gcs, args=(sd_png_bytes, sd_filename_png, "image/png")) # Upload the 4K 10-bit HDR AVIF avif_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_avif_bytes, sd_filename_avif, "image/avif")) png_thread.start() avif_thread.start() else: print("ℹ️ User did not consent to save. Skipping upload.") # 4. Return the 8-bit PIL image to Gradio return sd_image_pil, expanded_prompt def run_inference_and_upload_110(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)): # 1. Get the 8-bit PIL (for display) and 4K AVIF bytes (for upload) sd_image_pil, upscaled_avif_bytes, expanded_prompt = generate_images_110(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress) if save_consent: print("✅ User consented to save. Preparing uploads...") timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") # Define filenames sd_filename_png = f"sd35ll_{timestamp}.png" sd_filename_avif = f"sd35ll_4K_hdr_{timestamp}.avif" # 2. Convert the 8-bit PIL image to PNG bytes for upload img_byte_arr = io.BytesIO() sd_image_pil.save(img_byte_arr, format='PNG', optimize=False, compress_level=0) sd_png_bytes = img_byte_arr.getvalue() # 3. Start threads to upload both # Upload the 1K 8-bit PNG png_thread = threading.Thread(target=upload_to_gcs, args=(sd_png_bytes, sd_filename_png, "image/png")) # Upload the 4K 10-bit HDR AVIF avif_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_avif_bytes, sd_filename_avif, "image/avif")) png_thread.start() avif_thread.start() else: print("ℹ️ User did not consent to save. Skipping upload.") # 4. Return the 8-bit PIL image to Gradio return sd_image_pil, expanded_prompt css = """ #col-container {margin: 0 auto;max-width: 640px;} body{background-color: blue;} """ with gr.Blocks(theme=gr.themes.Origin(), css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # StableDiffusion 3.5 Large with UltraReal lora test") expanded_prompt_output = gr.Textbox(label="Prompt", lines=1) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button_30 = gr.Button("Run30", scale=0, variant="primary") run_button_60 = gr.Button("Run60", scale=0, variant="primary") run_button_110 = gr.Button("Run100", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False, type="pil") save_consent_checkbox = gr.Checkbox( label="✅ Anonymously upload result to a public gallery", value=True, # Default to not uploading info="Check this box to help us by contributing your image." ) with gr.Accordion("Advanced Settings", open=True): negative_prompt_1 = gr.Text(label="Negative prompt 1", max_lines=1, placeholder="Enter a negative prompt", value="bad anatomy, poorly drawn hands, distorted face, blurry, out of frame, low resolution, grainy, pixelated, disfigured, mutated, extra limbs, bad composition") negative_prompt_2 = gr.Text(label="Negative prompt 2", max_lines=1, placeholder="Enter a second negative prompt", value="unrealistic, cartoon, anime, sketch, painting, drawing, illustration, graphic, digital art, render, 3d, blurry, deformed, disfigured, poorly drawn, bad anatomy, mutated, extra limbs, ugly, out of frame, bad composition, low resolution, grainy, pixelated, noisy, oversaturated, undersaturated, (worst quality, low quality:1.3), (bad hands, missing fingers:1.2)") negative_prompt_3 = gr.Text(label="Negative prompt 3", max_lines=1, placeholder="Enter a third negative prompt", value="(worst quality, low quality:1.3), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.2), (blurry:1.1), cropped, watermark, text, signature, logo, jpeg artifacts, (ugly, deformed, disfigured:1.2), (poorly drawn:1.2), mutated, extra limbs, (bad proportions, gross proportions:1.2), (malformed limbs, missing arms, missing legs, extra arms, extra legs:1.2), (fused fingers, too many fingers, long neck:1.2), (unnatural body, unnatural pose:1.1), out of frame, (bad composition, poorly composed:1.1), (oversaturated, undersaturated:1.1), (grainy, pixelated:1.1), (low resolution, noisy:1.1), (unrealistic, distorted:1.1), (extra fingers, mutated hands, poorly drawn hands, bad hands:1.3), (missing fingers:1.3)") with gr.Row(): width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) with gr.Row(): guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=4.2) num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=150, step=1, value=60) run_button_30.click( fn=run_inference_and_upload_30, inputs=[ prompt, negative_prompt_1, negative_prompt_2, negative_prompt_3, width, height, guidance_scale, num_inference_steps, save_consent_checkbox # Pass the checkbox value ], outputs=[result, expanded_prompt_output], ) run_button_60.click( fn=run_inference_and_upload_60, inputs=[ prompt, negative_prompt_1, negative_prompt_2, negative_prompt_3, width, height, guidance_scale, num_inference_steps, save_consent_checkbox # Pass the checkbox value ], outputs=[result, expanded_prompt_output], ) run_button_110.click( fn=run_inference_and_upload_110, inputs=[ prompt, negative_prompt_1, negative_prompt_2, negative_prompt_3, width, height, guidance_scale, num_inference_steps, save_consent_checkbox # Pass the checkbox value ], outputs=[result, expanded_prompt_output], ) if __name__ == "__main__": demo.launch()