Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,15 @@
|
|
| 1 |
import spaces
|
| 2 |
import os
|
| 3 |
|
| 4 |
-
os.putenv('PYTORCH_NVML_BASED_CUDA_CHECK','1')
|
| 5 |
-
os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
|
| 6 |
alloc_conf_parts = [
|
| 7 |
'expandable_segments:True',
|
| 8 |
'pinned_use_background_threads:True' # Specific to pinned memory.
|
| 9 |
]
|
| 10 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = ','.join(alloc_conf_parts)
|
| 11 |
-
os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
| 12 |
-
os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
|
| 13 |
|
| 14 |
import gradio as gr
|
| 15 |
import numpy as np
|
|
@@ -27,14 +27,14 @@ import time
|
|
| 27 |
from image_gen_aux import UpscaleWithModel
|
| 28 |
from huggingface_hub import hf_hub_download
|
| 29 |
import datetime
|
| 30 |
-
import cyper
|
| 31 |
|
| 32 |
from diffusers import AutoencoderKL
|
| 33 |
#from models.transformer_sd3 import SD3Transformer2DModel
|
| 34 |
#from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
|
| 35 |
|
| 36 |
from PIL import Image
|
| 37 |
-
|
| 38 |
torch.backends.cuda.matmul.allow_tf32 = False
|
| 39 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
| 40 |
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
|
@@ -44,10 +44,10 @@ torch.backends.cudnn.benchmark = False
|
|
| 44 |
torch.backends.cuda.preferred_blas_library="cublas"
|
| 45 |
torch.backends.cuda.preferred_linalg_library="cusolver"
|
| 46 |
torch.set_float32_matmul_precision("highest")
|
| 47 |
-
|
| 48 |
hftoken = os.getenv("HF_AUTH_TOKEN")
|
| 49 |
|
| 50 |
-
code = r'''
|
| 51 |
import torch
|
| 52 |
import paramiko
|
| 53 |
import os
|
|
@@ -68,9 +68,9 @@ def upload_to_ftp(filename):
|
|
| 68 |
print(f"Uploaded {filename} to FTP server")
|
| 69 |
except Exception as e:
|
| 70 |
print(f"FTP upload error: {e}")
|
| 71 |
-
'''
|
| 72 |
|
| 73 |
-
pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
|
| 74 |
|
| 75 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 76 |
#vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", use_safetensors=True, subfolder='vae',token=True)
|
|
@@ -82,11 +82,11 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
| 82 |
#vae=None,
|
| 83 |
#vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
|
| 84 |
#scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
|
| 85 |
-
text_encoder=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
|
| 86 |
# text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
|
| 87 |
-
text_encoder_2=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
|
| 88 |
# text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
|
| 89 |
-
text_encoder_3=None, #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
|
| 90 |
# text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
|
| 91 |
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
| 92 |
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
|
@@ -95,9 +95,9 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
| 95 |
#torch_dtype=torch.bfloat16,
|
| 96 |
#use_safetensors=False,
|
| 97 |
)
|
| 98 |
-
text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(torch.device("cuda:0")) #, dtype=torch.bfloat16)
|
| 99 |
-
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(torch.device("cuda:0")) #, dtype=torch.bfloat16)
|
| 100 |
-
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", subfolder='text_encoder_3',token=True).to(torch.device("cuda:0")) #, dtype=torch.bfloat16)
|
| 101 |
|
| 102 |
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
|
| 103 |
|
|
@@ -122,9 +122,9 @@ def infer_30(
|
|
| 122 |
num_inference_steps,
|
| 123 |
progress=gr.Progress(track_tqdm=True),
|
| 124 |
):
|
| 125 |
-
pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
| 126 |
-
pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
| 127 |
-
pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
| 128 |
seed = random.randint(0, MAX_SEED)
|
| 129 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 130 |
print('-- generating image --')
|
|
@@ -147,7 +147,8 @@ def infer_30(
|
|
| 147 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 148 |
sd35_path = f"sd35ll_{timestamp}.png"
|
| 149 |
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
| 150 |
-
pyx.upload_to_ftp(sd35_path)
|
|
|
|
| 151 |
# pipe.unet.to('cpu')
|
| 152 |
upscaler_2.to(torch.device('cuda'))
|
| 153 |
with torch.no_grad():
|
|
@@ -156,7 +157,8 @@ def infer_30(
|
|
| 156 |
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
|
| 157 |
upscale_path = f"sd35ll_upscale_{timestamp}.png"
|
| 158 |
downscale2.save(upscale_path,optimize=False,compress_level=0)
|
| 159 |
-
pyx.upload_to_ftp(upscale_path)
|
|
|
|
| 160 |
return sd_image, prompt
|
| 161 |
|
| 162 |
@spaces.GPU(duration=70)
|
|
@@ -171,9 +173,9 @@ def infer_60(
|
|
| 171 |
num_inference_steps,
|
| 172 |
progress=gr.Progress(track_tqdm=True),
|
| 173 |
):
|
| 174 |
-
pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
| 175 |
-
pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
| 176 |
-
pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
| 177 |
seed = random.randint(0, MAX_SEED)
|
| 178 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 179 |
print('-- generating image --')
|
|
@@ -196,16 +198,18 @@ def infer_60(
|
|
| 196 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 197 |
sd35_path = f"sd35ll_{timestamp}.png"
|
| 198 |
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
| 199 |
-
pyx.upload_to_ftp(sd35_path)
|
|
|
|
| 200 |
# pipe.unet.to('cpu')
|
| 201 |
upscaler_2.to(torch.device('cuda'))
|
| 202 |
with torch.no_grad():
|
| 203 |
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
| 204 |
print('-- got upscaled image --')
|
| 205 |
-
downscale2 = upscale2.resize((upscale2.width //
|
| 206 |
upscale_path = f"sd35ll_upscale_{timestamp}.png"
|
| 207 |
downscale2.save(upscale_path,optimize=False,compress_level=0)
|
| 208 |
-
pyx.upload_to_ftp(upscale_path)
|
|
|
|
| 209 |
return sd_image, prompt
|
| 210 |
|
| 211 |
@spaces.GPU(duration=100)
|
|
@@ -220,9 +224,9 @@ def infer_90(
|
|
| 220 |
num_inference_steps,
|
| 221 |
progress=gr.Progress(track_tqdm=True),
|
| 222 |
):
|
| 223 |
-
pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
| 224 |
-
pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
| 225 |
-
pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
| 226 |
seed = random.randint(0, MAX_SEED)
|
| 227 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 228 |
print('-- generating image --')
|
|
@@ -245,16 +249,18 @@ def infer_90(
|
|
| 245 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 246 |
sd35_path = f"sd35ll_{timestamp}.png"
|
| 247 |
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
| 248 |
-
pyx.upload_to_ftp(sd35_path)
|
|
|
|
| 249 |
# pipe.unet.to('cpu')
|
| 250 |
upscaler_2.to(torch.device('cuda'))
|
| 251 |
with torch.no_grad():
|
| 252 |
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
| 253 |
print('-- got upscaled image --')
|
| 254 |
-
downscale2 = upscale2.resize((upscale2.width //
|
| 255 |
upscale_path = f"sd35ll_upscale_{timestamp}.png"
|
| 256 |
downscale2.save(upscale_path,optimize=False,compress_level=0)
|
| 257 |
-
pyx.upload_to_ftp(upscale_path)
|
|
|
|
| 258 |
return sd_image, prompt
|
| 259 |
|
| 260 |
@spaces.GPU(duration=110)
|
|
@@ -269,6 +275,9 @@ def infer_100(
|
|
| 269 |
num_inference_steps,
|
| 270 |
progress=gr.Progress(track_tqdm=True),
|
| 271 |
):
|
|
|
|
|
|
|
|
|
|
| 272 |
seed = random.randint(0, MAX_SEED)
|
| 273 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 274 |
print('-- generating image --')
|
|
@@ -283,6 +292,7 @@ def infer_100(
|
|
| 283 |
num_inference_steps=num_inference_steps,
|
| 284 |
width=width,
|
| 285 |
height=height,
|
|
|
|
| 286 |
generator=generator,
|
| 287 |
max_sequence_length=512
|
| 288 |
).images[0]
|
|
@@ -290,16 +300,18 @@ def infer_100(
|
|
| 290 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 291 |
sd35_path = f"sd35ll_{timestamp}.png"
|
| 292 |
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
| 293 |
-
pyx.upload_to_ftp(sd35_path)
|
|
|
|
| 294 |
# pipe.unet.to('cpu')
|
| 295 |
upscaler_2.to(torch.device('cuda'))
|
| 296 |
with torch.no_grad():
|
| 297 |
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
| 298 |
print('-- got upscaled image --')
|
| 299 |
-
downscale2 = upscale2.resize((upscale2.width //
|
| 300 |
upscale_path = f"sd35ll_upscale_{timestamp}.png"
|
| 301 |
downscale2.save(upscale_path,optimize=False,compress_level=0)
|
| 302 |
-
pyx.upload_to_ftp(upscale_path)
|
|
|
|
| 303 |
return sd_image, prompt
|
| 304 |
|
| 305 |
css = """
|
|
|
|
| 1 |
import spaces
|
| 2 |
import os
|
| 3 |
|
| 4 |
+
# os.putenv('PYTORCH_NVML_BASED_CUDA_CHECK','1')
|
| 5 |
+
# os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
|
| 6 |
alloc_conf_parts = [
|
| 7 |
'expandable_segments:True',
|
| 8 |
'pinned_use_background_threads:True' # Specific to pinned memory.
|
| 9 |
]
|
| 10 |
+
# os.environ['PYTORCH_CUDA_ALLOC_CONF'] = ','.join(alloc_conf_parts)
|
| 11 |
+
# os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
| 12 |
+
# os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
|
| 13 |
|
| 14 |
import gradio as gr
|
| 15 |
import numpy as np
|
|
|
|
| 27 |
from image_gen_aux import UpscaleWithModel
|
| 28 |
from huggingface_hub import hf_hub_download
|
| 29 |
import datetime
|
| 30 |
+
#import cyper
|
| 31 |
|
| 32 |
from diffusers import AutoencoderKL
|
| 33 |
#from models.transformer_sd3 import SD3Transformer2DModel
|
| 34 |
#from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
|
| 35 |
|
| 36 |
from PIL import Image
|
| 37 |
+
/*
|
| 38 |
torch.backends.cuda.matmul.allow_tf32 = False
|
| 39 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
| 40 |
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
|
|
|
| 44 |
torch.backends.cuda.preferred_blas_library="cublas"
|
| 45 |
torch.backends.cuda.preferred_linalg_library="cusolver"
|
| 46 |
torch.set_float32_matmul_precision("highest")
|
| 47 |
+
*/
|
| 48 |
hftoken = os.getenv("HF_AUTH_TOKEN")
|
| 49 |
|
| 50 |
+
# code = r'''
|
| 51 |
import torch
|
| 52 |
import paramiko
|
| 53 |
import os
|
|
|
|
| 68 |
print(f"Uploaded {filename} to FTP server")
|
| 69 |
except Exception as e:
|
| 70 |
print(f"FTP upload error: {e}")
|
| 71 |
+
# '''
|
| 72 |
|
| 73 |
+
# pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
|
| 74 |
|
| 75 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 76 |
#vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", use_safetensors=True, subfolder='vae',token=True)
|
|
|
|
| 82 |
#vae=None,
|
| 83 |
#vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
|
| 84 |
#scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
|
| 85 |
+
# text_encoder=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
|
| 86 |
# text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
|
| 87 |
+
# text_encoder_2=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
|
| 88 |
# text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
|
| 89 |
+
# text_encoder_3=None, #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
|
| 90 |
# text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
|
| 91 |
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
| 92 |
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
|
|
|
| 95 |
#torch_dtype=torch.bfloat16,
|
| 96 |
#use_safetensors=False,
|
| 97 |
)
|
| 98 |
+
#text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(torch.device("cuda:0")) #, dtype=torch.bfloat16)
|
| 99 |
+
#text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(torch.device("cuda:0")) #, dtype=torch.bfloat16)
|
| 100 |
+
#text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", subfolder='text_encoder_3',token=True).to(torch.device("cuda:0")) #, dtype=torch.bfloat16)
|
| 101 |
|
| 102 |
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
|
| 103 |
|
|
|
|
| 122 |
num_inference_steps,
|
| 123 |
progress=gr.Progress(track_tqdm=True),
|
| 124 |
):
|
| 125 |
+
#pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
| 126 |
+
#pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
| 127 |
+
#pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
| 128 |
seed = random.randint(0, MAX_SEED)
|
| 129 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 130 |
print('-- generating image --')
|
|
|
|
| 147 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 148 |
sd35_path = f"sd35ll_{timestamp}.png"
|
| 149 |
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
| 150 |
+
#pyx.upload_to_ftp(sd35_path)
|
| 151 |
+
upload_to_ftp(sd35_path)
|
| 152 |
# pipe.unet.to('cpu')
|
| 153 |
upscaler_2.to(torch.device('cuda'))
|
| 154 |
with torch.no_grad():
|
|
|
|
| 157 |
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
|
| 158 |
upscale_path = f"sd35ll_upscale_{timestamp}.png"
|
| 159 |
downscale2.save(upscale_path,optimize=False,compress_level=0)
|
| 160 |
+
#pyx.upload_to_ftp(upscale_path)
|
| 161 |
+
upload_to_ftp(upscale_path)
|
| 162 |
return sd_image, prompt
|
| 163 |
|
| 164 |
@spaces.GPU(duration=70)
|
|
|
|
| 173 |
num_inference_steps,
|
| 174 |
progress=gr.Progress(track_tqdm=True),
|
| 175 |
):
|
| 176 |
+
#pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
| 177 |
+
#pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
| 178 |
+
#pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
| 179 |
seed = random.randint(0, MAX_SEED)
|
| 180 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 181 |
print('-- generating image --')
|
|
|
|
| 198 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 199 |
sd35_path = f"sd35ll_{timestamp}.png"
|
| 200 |
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
| 201 |
+
#pyx.upload_to_ftp(sd35_path)
|
| 202 |
+
upload_to_ftp(sd35_path)
|
| 203 |
# pipe.unet.to('cpu')
|
| 204 |
upscaler_2.to(torch.device('cuda'))
|
| 205 |
with torch.no_grad():
|
| 206 |
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
| 207 |
print('-- got upscaled image --')
|
| 208 |
+
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
|
| 209 |
upscale_path = f"sd35ll_upscale_{timestamp}.png"
|
| 210 |
downscale2.save(upscale_path,optimize=False,compress_level=0)
|
| 211 |
+
#pyx.upload_to_ftp(upscale_path)
|
| 212 |
+
upload_to_ftp(upscale_path)
|
| 213 |
return sd_image, prompt
|
| 214 |
|
| 215 |
@spaces.GPU(duration=100)
|
|
|
|
| 224 |
num_inference_steps,
|
| 225 |
progress=gr.Progress(track_tqdm=True),
|
| 226 |
):
|
| 227 |
+
#pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
| 228 |
+
#pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
| 229 |
+
#pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
| 230 |
seed = random.randint(0, MAX_SEED)
|
| 231 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 232 |
print('-- generating image --')
|
|
|
|
| 249 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 250 |
sd35_path = f"sd35ll_{timestamp}.png"
|
| 251 |
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
| 252 |
+
#pyx.upload_to_ftp(sd35_path)
|
| 253 |
+
upload_to_ftp(sd35_path)
|
| 254 |
# pipe.unet.to('cpu')
|
| 255 |
upscaler_2.to(torch.device('cuda'))
|
| 256 |
with torch.no_grad():
|
| 257 |
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
| 258 |
print('-- got upscaled image --')
|
| 259 |
+
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
|
| 260 |
upscale_path = f"sd35ll_upscale_{timestamp}.png"
|
| 261 |
downscale2.save(upscale_path,optimize=False,compress_level=0)
|
| 262 |
+
#pyx.upload_to_ftp(upscale_path)
|
| 263 |
+
upload_to_ftp(upscale_path)
|
| 264 |
return sd_image, prompt
|
| 265 |
|
| 266 |
@spaces.GPU(duration=110)
|
|
|
|
| 275 |
num_inference_steps,
|
| 276 |
progress=gr.Progress(track_tqdm=True),
|
| 277 |
):
|
| 278 |
+
#pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
| 279 |
+
#pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
| 280 |
+
#pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
| 281 |
seed = random.randint(0, MAX_SEED)
|
| 282 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 283 |
print('-- generating image --')
|
|
|
|
| 292 |
num_inference_steps=num_inference_steps,
|
| 293 |
width=width,
|
| 294 |
height=height,
|
| 295 |
+
# cross_attention_kwargs={"scale": 0.75},
|
| 296 |
generator=generator,
|
| 297 |
max_sequence_length=512
|
| 298 |
).images[0]
|
|
|
|
| 300 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 301 |
sd35_path = f"sd35ll_{timestamp}.png"
|
| 302 |
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
| 303 |
+
#pyx.upload_to_ftp(sd35_path)
|
| 304 |
+
upload_to_ftp(sd35_path)
|
| 305 |
# pipe.unet.to('cpu')
|
| 306 |
upscaler_2.to(torch.device('cuda'))
|
| 307 |
with torch.no_grad():
|
| 308 |
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
| 309 |
print('-- got upscaled image --')
|
| 310 |
+
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
|
| 311 |
upscale_path = f"sd35ll_upscale_{timestamp}.png"
|
| 312 |
downscale2.save(upscale_path,optimize=False,compress_level=0)
|
| 313 |
+
#pyx.upload_to_ftp(upscale_path)
|
| 314 |
+
upload_to_ftp(upscale_path)
|
| 315 |
return sd_image, prompt
|
| 316 |
|
| 317 |
css = """
|