Update app.py
Browse files
app.py
CHANGED
|
@@ -85,9 +85,9 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
| 85 |
#torch_dtype=torch.bfloat16,
|
| 86 |
#use_safetensors=False,
|
| 87 |
)
|
| 88 |
-
text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device
|
| 89 |
-
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device
|
| 90 |
-
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device
|
| 91 |
|
| 92 |
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
|
| 93 |
|
|
@@ -118,17 +118,11 @@ def infer_30(
|
|
| 118 |
torch.set_float32_matmul_precision("highest")
|
| 119 |
seed = random.randint(0, MAX_SEED)
|
| 120 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 121 |
-
input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids
|
| 122 |
-
max_length = 77
|
| 123 |
-
if input_ids.shape[1] > max_length:
|
| 124 |
-
input_ids = input_ids[:, :max_length]
|
| 125 |
-
input_ids = input_ids.to(device)
|
| 126 |
print('-- generating image --')
|
| 127 |
sd_image = pipe(
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
#prompt_3=prompt,
|
| 132 |
negative_prompt=negative_prompt_1,
|
| 133 |
negative_prompt_2=negative_prompt_2,
|
| 134 |
negative_prompt_3=negative_prompt_3,
|
|
@@ -174,17 +168,11 @@ def infer_60(
|
|
| 174 |
torch.set_float32_matmul_precision("highest")
|
| 175 |
seed = random.randint(0, MAX_SEED)
|
| 176 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 177 |
-
input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids
|
| 178 |
-
max_length = 77
|
| 179 |
-
if input_ids.shape[1] > max_length:
|
| 180 |
-
input_ids = input_ids[:, :max_length]
|
| 181 |
-
input_ids = input_ids.to(device)
|
| 182 |
print('-- generating image --')
|
| 183 |
sd_image = pipe(
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
#prompt_3=prompt,
|
| 188 |
negative_prompt=negative_prompt_1,
|
| 189 |
negative_prompt_2=negative_prompt_2,
|
| 190 |
negative_prompt_3=negative_prompt_3,
|
|
@@ -230,17 +218,11 @@ def infer_90(
|
|
| 230 |
torch.set_float32_matmul_precision("highest")
|
| 231 |
seed = random.randint(0, MAX_SEED)
|
| 232 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 233 |
-
input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids
|
| 234 |
-
max_length = 77
|
| 235 |
-
if input_ids.shape[1] > max_length:
|
| 236 |
-
input_ids = input_ids[:, :max_length]
|
| 237 |
-
input_ids = input_ids.to(device)
|
| 238 |
print('-- generating image --')
|
| 239 |
sd_image = pipe(
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
#prompt_3=prompt,
|
| 244 |
negative_prompt=negative_prompt_1,
|
| 245 |
negative_prompt_2=negative_prompt_2,
|
| 246 |
negative_prompt_3=negative_prompt_3,
|
|
|
|
| 85 |
#torch_dtype=torch.bfloat16,
|
| 86 |
#use_safetensors=False,
|
| 87 |
)
|
| 88 |
+
text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(torch.device("cuda:0", dtype=torch.bfloat16)
|
| 89 |
+
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(torch.device("cuda:0", dtype=torch.bfloat16)
|
| 90 |
+
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(torch.device("cuda:0", dtype=torch.bfloat16)
|
| 91 |
|
| 92 |
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
|
| 93 |
|
|
|
|
| 118 |
torch.set_float32_matmul_precision("highest")
|
| 119 |
seed = random.randint(0, MAX_SEED)
|
| 120 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
print('-- generating image --')
|
| 122 |
sd_image = pipe(
|
| 123 |
+
prompt=prompt,
|
| 124 |
+
prompt_2=prompt,
|
| 125 |
+
prompt_3=prompt,
|
|
|
|
| 126 |
negative_prompt=negative_prompt_1,
|
| 127 |
negative_prompt_2=negative_prompt_2,
|
| 128 |
negative_prompt_3=negative_prompt_3,
|
|
|
|
| 168 |
torch.set_float32_matmul_precision("highest")
|
| 169 |
seed = random.randint(0, MAX_SEED)
|
| 170 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
print('-- generating image --')
|
| 172 |
sd_image = pipe(
|
| 173 |
+
prompt=prompt,
|
| 174 |
+
prompt_2=prompt,
|
| 175 |
+
prompt_3=prompt,
|
|
|
|
| 176 |
negative_prompt=negative_prompt_1,
|
| 177 |
negative_prompt_2=negative_prompt_2,
|
| 178 |
negative_prompt_3=negative_prompt_3,
|
|
|
|
| 218 |
torch.set_float32_matmul_precision("highest")
|
| 219 |
seed = random.randint(0, MAX_SEED)
|
| 220 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
print('-- generating image --')
|
| 222 |
sd_image = pipe(
|
| 223 |
+
prompt=prompt,
|
| 224 |
+
prompt_2=prompt,
|
| 225 |
+
prompt_3=prompt,
|
|
|
|
| 226 |
negative_prompt=negative_prompt_1,
|
| 227 |
negative_prompt_2=negative_prompt_2,
|
| 228 |
negative_prompt_3=negative_prompt_3,
|