Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
datasets:
|
| 4 |
+
- kakaobrain/kor_nli
|
| 5 |
+
- kakaobrain/kor_nlu
|
| 6 |
+
- klue/klue
|
| 7 |
+
language:
|
| 8 |
+
- ko
|
| 9 |
+
metrics:
|
| 10 |
+
- spearmanr
|
| 11 |
+
- pearsonr
|
| 12 |
+
pipeline_tag: sentence-similarity
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# ๐ SimCSE-KO
|
| 16 |
+
|
| 17 |
+
## 1. Intro
|
| 18 |
+
|
| 19 |
+
**ํ๊ตญ์ด SimCSE(BERT, Supervised)** ๋ชจ๋ธ์
๋๋ค.
|
| 20 |
+
Princeton NLP์ ์ฝ๋๊ฐ ์๋ ์๋ก์ด ์ฝ๋๋ฅผ ์ด์ฉํด ํ์ต๋์์ต๋๋ค.
|
| 21 |
+
๋ ๋ฌธ์ฅ ์ฌ์ด์ ์ฝ์ฌ์ธ ์ ์ฌ๋๋ฅผ ๊ณ์ฐํด ์๋ฏธ์ ๊ด๋ จ์ฑ์ ํ๋จํ ์ ์์ต๋๋ค.
|
| 22 |
+
|
| 23 |
+
- Github: [https://github.com/snumin44/SimCSE-KO](https://github.com/snumin44/SimCSE-KO)
|
| 24 |
+
- Original Code: [https://github.com/princeton-nlp/SimCSE](https://github.com/princeton-nlp/SimCSE)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
## 2. Experiments Settings
|
| 28 |
+
|
| 29 |
+
- Model: klue/bert-base
|
| 30 |
+
- Dataset: KorNLI-train (supervised training), KorSTS-dev (evaluation)
|
| 31 |
+
- epoch: 1
|
| 32 |
+
- max length: 64
|
| 33 |
+
- batch size: 256
|
| 34 |
+
- learning rate: 5e-5
|
| 35 |
+
- drop out: 0.1
|
| 36 |
+
- temp: 0.05
|
| 37 |
+
- pooler: cls
|
| 38 |
+
- 1 A100 GPU
|
| 39 |
+
|
| 40 |
+
## 3. Performance
|
| 41 |
+
|
| 42 |
+
## (1) KorSTS-test
|
| 43 |
+
|Model|AVG|Cosine Pearson|Cosine Spearman|Euclidean Pearson|Euclidean Spearman|Manhatten Pearson|Manhatten Spearman|Dot Pearson|Dot Spearman|
|
| 44 |
+
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
| 45 |
+
|SimCSE-BERT-KO<br>(unsup)|72.85|73.00|72.77|72.96|72.92|72.93|72.86|72.80|72.53|
|
| 46 |
+
|SimCSE-BERT-KO<br>(sup)|**85.98**|**86.05**|**86.00**|**85.88**|**86.08**|**85.90**|**86.08**|**85.96**|**85.89**|
|
| 47 |
+
|SimCSE-RoBERTa-KO<br>(unsup)|75.79|76.39|75.57|75.71|75.52|75.65|75.42|76.41|75.63|
|
| 48 |
+
|SimCSE-RoBERTa-KO<br>(sup)|83.06|82.67|83.21|83.22|83.27|83.24|83.28|82.54|83.03|82.92|
|
| 49 |
+
|
| 50 |
+
## (2) Klue-dev
|
| 51 |
+
|Model|AVG|Cosine Pearson|Cosine Spearman|Euclidean Pearson|Euclidean Spearman|Manhatten Pearson|Manhatten Spearman|Dot Pearson|Dot Spearman|
|
| 52 |
+
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
| 53 |
+
|SimCSE-BERT-KO<br>(unsup)|65.27|66.27|64.31|66.18|64.05|66.00|63.77|66.64|64.93|
|
| 54 |
+
|SimCSE-BERT-KO<br>(sup)|**83.96**|**82.98**|**84.32**|**84.32**|**84.30**|**84.28**|**84.20**|**83.00**|**84.29**|
|
| 55 |
+
|SimCSE-RoBERTa-KO<br>(unsup)|80.78|81.20|80.35|81.27|80.36|81.28|80.40|81.13|80.26|
|
| 56 |
+
|SimCSE-RoBERTa-KO<br>(sup)|85.31|84.14|85.64|86.09|85.68|86.04|85.65|83.94|85.30|
|
| 57 |
+
|
| 58 |
+
## Citing
|
| 59 |
+
```
|
| 60 |
+
@article{gao2021simcse,
|
| 61 |
+
title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
|
| 62 |
+
author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
|
| 63 |
+
booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
|
| 64 |
+
year={2021}
|
| 65 |
+
}
|
| 66 |
+
@article{ham2020kornli,
|
| 67 |
+
title={KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding},
|
| 68 |
+
author={Ham, Jiyeon and Choe, Yo Joong and Park, Kyubyong and Choi, Ilji and Soh, Hyungjoon},
|
| 69 |
+
journal={arXiv preprint arXiv:2004.03289},
|
| 70 |
+
year={2020}
|
| 71 |
+
}
|
| 72 |
+
```
|