Model save
Browse files- README.md +88 -0
- model.safetensors +1 -1
README.md
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model: google/vit-base-patch16-224
|
| 4 |
+
tags:
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
metrics:
|
| 7 |
+
- accuracy
|
| 8 |
+
- precision
|
| 9 |
+
- recall
|
| 10 |
+
- f1
|
| 11 |
+
model-index:
|
| 12 |
+
- name: vit-epsilon-1e-9
|
| 13 |
+
results: []
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 17 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 18 |
+
|
| 19 |
+
# vit-epsilon-1e-9
|
| 20 |
+
|
| 21 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
|
| 22 |
+
It achieves the following results on the evaluation set:
|
| 23 |
+
- Loss: 0.6021
|
| 24 |
+
- Accuracy: 0.8627
|
| 25 |
+
- Precision: 0.8567
|
| 26 |
+
- Recall: 0.8627
|
| 27 |
+
- F1: 0.8572
|
| 28 |
+
|
| 29 |
+
## Model description
|
| 30 |
+
|
| 31 |
+
More information needed
|
| 32 |
+
|
| 33 |
+
## Intended uses & limitations
|
| 34 |
+
|
| 35 |
+
More information needed
|
| 36 |
+
|
| 37 |
+
## Training and evaluation data
|
| 38 |
+
|
| 39 |
+
More information needed
|
| 40 |
+
|
| 41 |
+
## Training procedure
|
| 42 |
+
|
| 43 |
+
### Training hyperparameters
|
| 44 |
+
|
| 45 |
+
The following hyperparameters were used during training:
|
| 46 |
+
- learning_rate: 0.0001
|
| 47 |
+
- train_batch_size: 16
|
| 48 |
+
- eval_batch_size: 8
|
| 49 |
+
- seed: 42
|
| 50 |
+
- optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-09
|
| 51 |
+
- lr_scheduler_type: cosine
|
| 52 |
+
- lr_scheduler_warmup_steps: 1733
|
| 53 |
+
- num_epochs: 100
|
| 54 |
+
- mixed_precision_training: Native AMP
|
| 55 |
+
|
| 56 |
+
### Training results
|
| 57 |
+
|
| 58 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
| 59 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
| 60 |
+
| 1.7127 | 1.0 | 321 | 0.9579 | 0.6987 | 0.6581 | 0.6987 | 0.6331 |
|
| 61 |
+
| 1.1596 | 2.0 | 642 | 0.7026 | 0.7299 | 0.7442 | 0.7299 | 0.7299 |
|
| 62 |
+
| 1.0337 | 3.0 | 963 | 0.6560 | 0.7549 | 0.7647 | 0.7549 | 0.7356 |
|
| 63 |
+
| 0.9695 | 4.0 | 1284 | 0.5708 | 0.7656 | 0.7963 | 0.7656 | 0.7758 |
|
| 64 |
+
| 0.9137 | 5.0 | 1605 | 0.6460 | 0.7611 | 0.7828 | 0.7611 | 0.7625 |
|
| 65 |
+
| 1.0053 | 6.0 | 1926 | 0.6020 | 0.7673 | 0.8049 | 0.7673 | 0.7797 |
|
| 66 |
+
| 0.896 | 7.0 | 2247 | 0.7087 | 0.7271 | 0.8055 | 0.7271 | 0.7477 |
|
| 67 |
+
| 0.7646 | 8.0 | 2568 | 0.6615 | 0.7441 | 0.8134 | 0.7441 | 0.7622 |
|
| 68 |
+
| 0.7262 | 9.0 | 2889 | 0.5611 | 0.7975 | 0.8190 | 0.7975 | 0.7985 |
|
| 69 |
+
| 0.7025 | 10.0 | 3210 | 0.5338 | 0.7975 | 0.8278 | 0.7975 | 0.8058 |
|
| 70 |
+
| 0.6138 | 11.0 | 3531 | 0.5143 | 0.8131 | 0.8359 | 0.8131 | 0.8206 |
|
| 71 |
+
| 0.5582 | 12.0 | 3852 | 0.6157 | 0.7864 | 0.8253 | 0.7864 | 0.7992 |
|
| 72 |
+
| 0.4736 | 13.0 | 4173 | 0.6899 | 0.8117 | 0.8253 | 0.8117 | 0.8007 |
|
| 73 |
+
| 0.4581 | 14.0 | 4494 | 0.6062 | 0.8128 | 0.8447 | 0.8128 | 0.8199 |
|
| 74 |
+
| 0.407 | 15.0 | 4815 | 0.5317 | 0.8308 | 0.8410 | 0.8308 | 0.8339 |
|
| 75 |
+
| 0.369 | 16.0 | 5136 | 0.6475 | 0.8197 | 0.8414 | 0.8197 | 0.8270 |
|
| 76 |
+
| 0.2855 | 17.0 | 5457 | 0.5153 | 0.8617 | 0.8572 | 0.8617 | 0.8578 |
|
| 77 |
+
| 0.2545 | 18.0 | 5778 | 0.5455 | 0.8436 | 0.8555 | 0.8436 | 0.8473 |
|
| 78 |
+
| 0.2221 | 19.0 | 6099 | 0.5955 | 0.8471 | 0.8624 | 0.8471 | 0.8516 |
|
| 79 |
+
| 0.2143 | 20.0 | 6420 | 0.5772 | 0.8575 | 0.8604 | 0.8575 | 0.8582 |
|
| 80 |
+
| 0.1619 | 21.0 | 6741 | 0.6021 | 0.8627 | 0.8567 | 0.8627 | 0.8572 |
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
### Framework versions
|
| 84 |
+
|
| 85 |
+
- Transformers 4.40.0.dev0
|
| 86 |
+
- Pytorch 2.2.1+cu121
|
| 87 |
+
- Datasets 2.18.0
|
| 88 |
+
- Tokenizers 0.15.2
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 343239356
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:987241b051e0f842d0c53467df87bc657697735fef118ed3ace22dc0945b7a43
|
| 3 |
size 343239356
|