Upload 10 files
Browse files- 1_Pooling/config.json +7 -0
- README.md +78 -0
- config.json +27 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 312,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
| 7 |
+
}
|
README.md
CHANGED
|
@@ -1,3 +1,81 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: mit
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- ru
|
| 4 |
+
|
| 5 |
+
pipeline_tag: sentence-similarity
|
| 6 |
+
|
| 7 |
+
tags:
|
| 8 |
+
- russian
|
| 9 |
+
- pretraining
|
| 10 |
+
- embeddings
|
| 11 |
+
- tiny
|
| 12 |
+
- feature-extraction
|
| 13 |
+
- sentence-similarity
|
| 14 |
+
- sentence-transformers
|
| 15 |
+
- transformers
|
| 16 |
+
|
| 17 |
license: mit
|
| 18 |
+
|
| 19 |
---
|
| 20 |
+
|
| 21 |
+
## Быстрый Bert для Semantic text similarity (STS)
|
| 22 |
+
|
| 23 |
+
Современная (на март 2024) быстрая модель BERT для расчетов компактных эмбедингов предложений на русском языке. Модель основана на [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2), имеет аналогичный размер и быстродействие. На STS и близких задачах (PI, NLI, SA, TI) для русского языка превосходит LaBSE.
|
| 24 |
+
|
| 25 |
+
Оптимальна для использования в составе RAG LLMs (при вынужденном инференсе на CPU). Для работы с контекстом свыше 512 требует дообучения под целевой домен.
|
| 26 |
+
|
| 27 |
+
## Использование модели с библиотекой `transformers`:
|
| 28 |
+
|
| 29 |
+
```python
|
| 30 |
+
# pip install transformers sentencepiece
|
| 31 |
+
import torch
|
| 32 |
+
from transformers import AutoTokenizer, AutoModel
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained("sergeyzh/rubert-tiny-sts")
|
| 34 |
+
model = AutoModel.from_pretrained("sergeyzh/rubert-tiny-sts")
|
| 35 |
+
# model.cuda() # uncomment it if you have a GPU
|
| 36 |
+
|
| 37 |
+
def embed_bert_cls(text, model, tokenizer):
|
| 38 |
+
t = tokenizer(text, padding=True, truncation=True, return_tensors='pt')
|
| 39 |
+
with torch.no_grad():
|
| 40 |
+
model_output = model(**{k: v.to(model.device) for k, v in t.items()})
|
| 41 |
+
embeddings = model_output.last_hidden_state[:, 0, :]
|
| 42 |
+
embeddings = torch.nn.functional.normalize(embeddings)
|
| 43 |
+
return embeddings[0].cpu().numpy()
|
| 44 |
+
|
| 45 |
+
print(embed_bert_cls('привет мир', model, tokenizer).shape)
|
| 46 |
+
# (312,)
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
## Использование с `sentence_transformers`:
|
| 50 |
+
```Python
|
| 51 |
+
from sentence_transformers import SentenceTransformer, util
|
| 52 |
+
|
| 53 |
+
model = SentenceTransformer('sergeyzh/rubert-tiny-sts')
|
| 54 |
+
|
| 55 |
+
sentences = ["привет мир", "hello world", "здравствуй вселенная"]
|
| 56 |
+
embeddings = model.encode(sentences)
|
| 57 |
+
print(util.dot_score(embeddings, embeddings))
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
## Метрики
|
| 61 |
+
Оценки модели на бенчмарке [encodechka](https://github.com/avidale/encodechka):
|
| 62 |
+
|
| 63 |
+
| Модель | STS | PI | NLI | SA | TI |
|
| 64 |
+
|:---------------------------------|:---------:|:---------:|:---------:|:---------:|:---------:|
|
| 65 |
+
| intfloat/multilingual-e5-large | 0.862 | 0.727 | 0.473 | 0.810 | 0.979 |
|
| 66 |
+
| Tochka-AI/ruRoPEBert-e5-base-512 | 0.793 | 0.704 | 0.457 | 0.803 | 0.970 |
|
| 67 |
+
| **sergeyzh/rubert-tiny-sts** | **0.797** | **0.702** | **0.453** | **0.778** | **0.946** |
|
| 68 |
+
| cointegrated/LaBSE-en-ru | 0.794 | 0.659 | 0.431 | 0.761 | 0.946 |
|
| 69 |
+
| cointegrated/rubert-tiny2 | 0.750 | 0.651 | 0.417 | 0.737 | 0.937 |
|
| 70 |
+
|
| 71 |
+
**Задачи:**
|
| 72 |
+
|
| 73 |
+
- Semantic text similarity (**STS**);
|
| 74 |
+
- Paraphrase identification (**PI**);
|
| 75 |
+
- Natural language inference (**NLI**);
|
| 76 |
+
- Sentiment analysis (**SA**);
|
| 77 |
+
- Toxicity identification (**TI**).
|
| 78 |
+
|
| 79 |
+
## Связанные ресурсы
|
| 80 |
+
Вопросы использования модели обсуждаются в [русскоязычном чате NLP](https://t.me/natural_language_processing).
|
| 81 |
+
|
config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "sergeyzh/rubert-tiny-sts",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertForPreTraining"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"emb_size": 312,
|
| 9 |
+
"gradient_checkpointing": false,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"hidden_size": 312,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 600,
|
| 15 |
+
"layer_norm_eps": 1e-12,
|
| 16 |
+
"max_position_embeddings": 2048,
|
| 17 |
+
"model_type": "bert",
|
| 18 |
+
"num_attention_heads": 12,
|
| 19 |
+
"num_hidden_layers": 3,
|
| 20 |
+
"pad_token_id": 0,
|
| 21 |
+
"position_embedding_type": "absolute",
|
| 22 |
+
"torch_dtype": "float32",
|
| 23 |
+
"transformers_version": "4.38.1",
|
| 24 |
+
"type_vocab_size": 2,
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 83828
|
| 27 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:69b3d1d73b5d33017d8d4dccbe84e960cff71a0c48684911624eae680839e381
|
| 3 |
+
size 117513120
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 2048,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"4": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": false,
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 6144,
|
| 50 |
+
"never_split": null,
|
| 51 |
+
"pad_token": "[PAD]",
|
| 52 |
+
"sep_token": "[SEP]",
|
| 53 |
+
"strip_accents": null,
|
| 54 |
+
"tokenize_chinese_chars": true,
|
| 55 |
+
"tokenizer_class": "BertTokenizer",
|
| 56 |
+
"unk_token": "[UNK]"
|
| 57 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|