Update README.md
Browse files
README.md
CHANGED
|
@@ -2,8 +2,64 @@
|
|
| 2 |
tags:
|
| 3 |
- model_hub_mixin
|
| 4 |
- pytorch_model_hub_mixin
|
|
|
|
|
|
|
|
|
|
| 5 |
---
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
|
| 8 |
- Library: [More Information Needed]
|
| 9 |
- Docs: [More Information Needed]
|
|
|
|
| 2 |
tags:
|
| 3 |
- model_hub_mixin
|
| 4 |
- pytorch_model_hub_mixin
|
| 5 |
+
license: mit
|
| 6 |
+
base_model:
|
| 7 |
+
- microsoft/resnet-18
|
| 8 |
---
|
| 9 |
|
| 10 |
+
# ResNetModelFT for Skin Cancer Classification
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
- **Model Architecture:** ResNet-18
|
| 15 |
+
- **Framework:** PyTorch
|
| 16 |
+
- **Input Shape:** 224x224 RGB images
|
| 17 |
+
- **Number of Parameters:** ~11.7M (ResNet-18 pretrained model)
|
| 18 |
+
- **Output:** Multi-class classification (9 classes)
|
| 19 |
+
|
| 20 |
+
## Model Description
|
| 21 |
+
|
| 22 |
+
This model uses **ResNet-18**, a well-known deep residual network, pre-trained on ImageNet. The model is fine-tuned by replacing the fully connected layer to accommodate multi-class classification for **skin cancer detection**. Only the fully connected layer is trainable, while the convolutional layers of the ResNet model are frozen to retain pretrained features.
|
| 23 |
+
|
| 24 |
+
The final model performs multi-class classification with 9 output classes corresponding to different skin cancer types.
|
| 25 |
+
|
| 26 |
+
## Training Details
|
| 27 |
+
|
| 28 |
+
- **Optimizer:** Adam
|
| 29 |
+
- **Batch Size:** 64
|
| 30 |
+
- **Loss Function:** Cross-Entropy Loss
|
| 31 |
+
- **Number of Epochs:** 10
|
| 32 |
+
- **Dataset:** [Skin Cancer 9-Class Dataset](https://www.kaggle.com/datasets/nodoubttome/skin-cancer9-classesisic)
|
| 33 |
+
|
| 34 |
+
### Metrics (Validation Set)
|
| 35 |
+
|
| 36 |
+
| Class | Precision | Recall | F1-Score |
|
| 37 |
+
|-------|-----------|--------|----------|
|
| 38 |
+
| 0 | 1.00 | 0.06 | 0.12 |
|
| 39 |
+
| 1 | 0.45 | 0.31 | 0.37 |
|
| 40 |
+
| 2 | 0.57 | 0.25 | 0.35 |
|
| 41 |
+
| 3 | 0.00 | 0.00 | 0.00 |
|
| 42 |
+
| 4 | 0.32 | 1.00 | 0.48 |
|
| 43 |
+
| 5 | 0.31 | 0.25 | 0.28 |
|
| 44 |
+
| 6 | 0.50 | 0.67 | 0.57 |
|
| 45 |
+
| 7 | 0.20 | 0.06 | 0.10 |
|
| 46 |
+
| 8 | 0.14 | 1.00 | 0.24 |
|
| 47 |
+
|
| 48 |
+
- **Overall Accuracy:** 0.31
|
| 49 |
+
- **Macro Average Precision:** 0.39
|
| 50 |
+
- **Macro Average Recall:** 0.40
|
| 51 |
+
- **Macro Average F1-Score:** 0.28
|
| 52 |
+
- **Weighted Average Precision:** 0.40
|
| 53 |
+
- **Weighted Average Recall:** 0.31
|
| 54 |
+
- **Weighted Average F1-Score:** 0.25
|
| 55 |
+
|
| 56 |
+
## License
|
| 57 |
+
|
| 58 |
+
This model is released under the **MIT License**.
|
| 59 |
+
|
| 60 |
+
---
|
| 61 |
+
|
| 62 |
+
|
| 63 |
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
|
| 64 |
- Library: [More Information Needed]
|
| 65 |
- Docs: [More Information Needed]
|