sebastiansarasti commited on
Commit
af1a63f
·
verified ·
1 Parent(s): a176a4b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -0
README.md CHANGED
@@ -2,8 +2,64 @@
2
  tags:
3
  - model_hub_mixin
4
  - pytorch_model_hub_mixin
 
 
 
5
  ---
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
  - Library: [More Information Needed]
9
  - Docs: [More Information Needed]
 
2
  tags:
3
  - model_hub_mixin
4
  - pytorch_model_hub_mixin
5
+ license: mit
6
+ base_model:
7
+ - microsoft/resnet-18
8
  ---
9
 
10
+ # ResNetModelFT for Skin Cancer Classification
11
+
12
+ ## Model Details
13
+
14
+ - **Model Architecture:** ResNet-18
15
+ - **Framework:** PyTorch
16
+ - **Input Shape:** 224x224 RGB images
17
+ - **Number of Parameters:** ~11.7M (ResNet-18 pretrained model)
18
+ - **Output:** Multi-class classification (9 classes)
19
+
20
+ ## Model Description
21
+
22
+ This model uses **ResNet-18**, a well-known deep residual network, pre-trained on ImageNet. The model is fine-tuned by replacing the fully connected layer to accommodate multi-class classification for **skin cancer detection**. Only the fully connected layer is trainable, while the convolutional layers of the ResNet model are frozen to retain pretrained features.
23
+
24
+ The final model performs multi-class classification with 9 output classes corresponding to different skin cancer types.
25
+
26
+ ## Training Details
27
+
28
+ - **Optimizer:** Adam
29
+ - **Batch Size:** 64
30
+ - **Loss Function:** Cross-Entropy Loss
31
+ - **Number of Epochs:** 10
32
+ - **Dataset:** [Skin Cancer 9-Class Dataset](https://www.kaggle.com/datasets/nodoubttome/skin-cancer9-classesisic)
33
+
34
+ ### Metrics (Validation Set)
35
+
36
+ | Class | Precision | Recall | F1-Score |
37
+ |-------|-----------|--------|----------|
38
+ | 0 | 1.00 | 0.06 | 0.12 |
39
+ | 1 | 0.45 | 0.31 | 0.37 |
40
+ | 2 | 0.57 | 0.25 | 0.35 |
41
+ | 3 | 0.00 | 0.00 | 0.00 |
42
+ | 4 | 0.32 | 1.00 | 0.48 |
43
+ | 5 | 0.31 | 0.25 | 0.28 |
44
+ | 6 | 0.50 | 0.67 | 0.57 |
45
+ | 7 | 0.20 | 0.06 | 0.10 |
46
+ | 8 | 0.14 | 1.00 | 0.24 |
47
+
48
+ - **Overall Accuracy:** 0.31
49
+ - **Macro Average Precision:** 0.39
50
+ - **Macro Average Recall:** 0.40
51
+ - **Macro Average F1-Score:** 0.28
52
+ - **Weighted Average Precision:** 0.40
53
+ - **Weighted Average Recall:** 0.31
54
+ - **Weighted Average F1-Score:** 0.25
55
+
56
+ ## License
57
+
58
+ This model is released under the **MIT License**.
59
+
60
+ ---
61
+
62
+
63
  This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
64
  - Library: [More Information Needed]
65
  - Docs: [More Information Needed]