seba commited on
Commit
9ebc396
·
verified ·
1 Parent(s): 9a067b6

Upload folder using huggingface_hub

Browse files
voxcpm_feat_encoder_ane_enum_12.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1804082d469b0dba72d227822b6d759282182c2e4f74072698b8e3f6d478ff2a
3
+ size 243
voxcpm_feat_encoder_ane_enum_12.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9357ae1c828fa46a4b3677c514034958f2072d6eb2fe540d6e9fe2ee54f04637
3
+ size 255
voxcpm_feat_encoder_ane_enum_12.mlmodelc/model.mil ADDED
@@ -0,0 +1,600 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.3)
2
+ [buildInfo = dict<string, string>({{"coremlc-component-MIL", "3405.2.1"}, {"coremlc-version", "3405.2.1"}})]
3
+ {
4
+ func main<ios18>(tensor<fp16, [?, 64, 1, 2]> x) [FlexibleShapeInformation = tuple<tuple<string, dict<string, tensor<int32, [?]>>>, tuple<string, dict<string, dict<string, tensor<int32, [?]>>>>>((("DefaultShapes", {{"x", [12, 64, 1, 2]}}), ("EnumeratedShapes", {{"25a592c0", {{"x", [28, 64, 1, 2]}}}, {"38088a33", {{"x", [18, 64, 1, 2]}}}, {"42bba9e4", {{"x", [22, 64, 1, 2]}}}, {"59316af0", {{"x", [12, 64, 1, 2]}}}, {"6bca635d", {{"x", [16, 64, 1, 2]}}}, {"84aa3ba0", {{"x", [8, 64, 1, 2]}}}, {"981a1dc8", {{"x", [32, 64, 1, 2]}}}, {"9d44cf0c", {{"x", [24, 64, 1, 2]}}}, {"9e64e8ea", {{"x", [10, 64, 1, 2]}}}, {"bcc527a0", {{"x", [26, 64, 1, 2]}}}, {"ce7d4a38", {{"x", [20, 64, 1, 2]}}}, {"d8a49046", {{"x", [14, 64, 1, 2]}}}, {"efb221f6", {{"x", [30, 64, 1, 2]}}}, {"f0e65740", {{"x", [1, 64, 1, 2]}}}})))] {
5
+ string x_3_pad_type_0 = const()[name = string("x_3_pad_type_0"), val = string("valid")];
6
+ tensor<int32, [2]> x_3_strides_0 = const()[name = string("x_3_strides_0"), val = tensor<int32, [2]>([1, 1])];
7
+ tensor<int32, [4]> x_3_pad_0 = const()[name = string("x_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
8
+ tensor<int32, [2]> x_3_dilations_0 = const()[name = string("x_3_dilations_0"), val = tensor<int32, [2]>([1, 1])];
9
+ int32 x_3_groups_0 = const()[name = string("x_3_groups_0"), val = int32(1)];
10
+ tensor<fp16, [1024, 64, 1, 1]> var_53_to_fp16 = const()[name = string("op_53_to_fp16"), val = tensor<fp16, [1024, 64, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))];
11
+ tensor<fp16, [1024]> layer_in_proj_bias_to_fp16 = const()[name = string("layer_in_proj_bias_to_fp16"), val = tensor<fp16, [1024]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(131200)))];
12
+ tensor<fp16, [?, 1024, 1, 2]> x_3_cast_fp16 = conv(bias = layer_in_proj_bias_to_fp16, dilations = x_3_dilations_0, groups = x_3_groups_0, pad = x_3_pad_0, pad_type = x_3_pad_type_0, strides = x_3_strides_0, weight = var_53_to_fp16, x = x)[name = string("x_3_cast_fp16")];
13
+ fp16 fill_like_0_value_0_to_fp16 = const()[name = string("fill_like_0_value_0_to_fp16"), val = fp16(0x1p+0)];
14
+ tensor<fp16, [?, 1024, 1, 2]> fill_like_0_cast_fp16 = fill_like(ref_tensor = x_3_cast_fp16, value = fill_like_0_value_0_to_fp16)[name = string("fill_like_0_cast_fp16")];
15
+ tensor<int32, [4]> var_70_begin_0 = const()[name = string("op_70_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
16
+ tensor<int32, [4]> var_70_end_0 = const()[name = string("op_70_end_0"), val = tensor<int32, [4]>([0, 1024, 1, 1])];
17
+ tensor<bool, [4]> var_70_end_mask_0 = const()[name = string("op_70_end_mask_0"), val = tensor<bool, [4]>([true, true, true, false])];
18
+ tensor<fp16, [?, 1024, 1, 1]> var_70_cast_fp16 = slice_by_index(begin = var_70_begin_0, end = var_70_end_0, end_mask = var_70_end_mask_0, x = fill_like_0_cast_fp16)[name = string("op_70_cast_fp16")];
19
+ tensor<fp16, [1, 1024, 1, 1]> var_71_to_fp16 = const()[name = string("op_71_to_fp16"), val = tensor<fp16, [1, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(133312)))];
20
+ tensor<fp16, [?, 1024, 1, 1]> special_tokens_cast_fp16 = mul(x = var_70_cast_fp16, y = var_71_to_fp16)[name = string("special_tokens_cast_fp16")];
21
+ int32 var_74 = const()[name = string("op_74"), val = int32(3)];
22
+ bool x_5_interleave_0 = const()[name = string("x_5_interleave_0"), val = bool(false)];
23
+ tensor<fp16, [?, 1024, 1, 3]> x_5_cast_fp16 = concat(axis = var_74, interleave = x_5_interleave_0, values = (special_tokens_cast_fp16, x_3_cast_fp16))[name = string("x_5_cast_fp16")];
24
+ int32 var_86 = const()[name = string("op_86"), val = int32(-2)];
25
+ int32 var_90 = const()[name = string("op_90"), val = int32(1)];
26
+ int32 var_95 = const()[name = string("op_95"), val = int32(2)];
27
+ fp16 const_1_promoted_to_fp16 = const()[name = string("const_1_promoted_to_fp16"), val = fp16(-0x1p+0)];
28
+ tensor<fp16, [?, 1024, 1, 3]> var_100_cast_fp16 = mul(x = x_5_cast_fp16, y = const_1_promoted_to_fp16)[name = string("op_100_cast_fp16")];
29
+ bool x_7_interleave_0 = const()[name = string("x_7_interleave_0"), val = bool(false)];
30
+ tensor<fp16, [?, 2048, 1, 3]> x_7_cast_fp16 = concat(axis = var_90, interleave = x_7_interleave_0, values = (x_5_cast_fp16, var_100_cast_fp16))[name = string("x_7_cast_fp16")];
31
+ tensor<int32, [1]> out_1_axes_0 = const()[name = string("out_1_axes_0"), val = tensor<int32, [1]>([1])];
32
+ fp16 var_110_to_fp16 = const()[name = string("op_110_to_fp16"), val = fp16(0x1.5p-17)];
33
+ tensor<fp16, [?, 2048, 1, 3]> out_1_cast_fp16 = layer_norm(axes = out_1_axes_0, epsilon = var_110_to_fp16, x = x_7_cast_fp16)[name = string("out_1_cast_fp16")];
34
+ tensor<fp16, [1, 2048, 1, 1]> layer_encoder_layers_0_input_layernorm_weight_to_fp16 = const()[name = string("layer_encoder_layers_0_input_layernorm_weight_to_fp16"), val = tensor<fp16, [1, 2048, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(135424)))];
35
+ tensor<fp16, [?, 2048, 1, 3]> out_3_cast_fp16 = mul(x = out_1_cast_fp16, y = layer_encoder_layers_0_input_layernorm_weight_to_fp16)[name = string("out_3_cast_fp16")];
36
+ tensor<int32, [2]> var_116_split_sizes_0 = const()[name = string("op_116_split_sizes_0"), val = tensor<int32, [2]>([1024, 1024])];
37
+ int32 var_116_axis_0 = const()[name = string("op_116_axis_0"), val = int32(1)];
38
+ tensor<fp16, [?, 1024, 1, 3]> var_116_cast_fp16_0, tensor<fp16, [?, 1024, 1, 3]> var_116_cast_fp16_1 = split(axis = var_116_axis_0, split_sizes = var_116_split_sizes_0, x = out_3_cast_fp16)[name = string("op_116_cast_fp16")];
39
+ string query_states_1_pad_type_0 = const()[name = string("query_states_1_pad_type_0"), val = string("valid")];
40
+ tensor<int32, [2]> query_states_1_strides_0 = const()[name = string("query_states_1_strides_0"), val = tensor<int32, [2]>([1, 1])];
41
+ tensor<int32, [4]> query_states_1_pad_0 = const()[name = string("query_states_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
42
+ tensor<int32, [2]> query_states_1_dilations_0 = const()[name = string("query_states_1_dilations_0"), val = tensor<int32, [2]>([1, 1])];
43
+ int32 query_states_1_groups_0 = const()[name = string("query_states_1_groups_0"), val = int32(1)];
44
+ tensor<fp16, [1024, 1024, 1, 1]> var_81_to_fp16 = const()[name = string("op_81_to_fp16"), val = tensor<fp16, [1024, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(139584)))];
45
+ tensor<fp16, [?, 1024, 1, 3]> query_states_1_cast_fp16 = conv(dilations = query_states_1_dilations_0, groups = query_states_1_groups_0, pad = query_states_1_pad_0, pad_type = query_states_1_pad_type_0, strides = query_states_1_strides_0, weight = var_81_to_fp16, x = var_116_cast_fp16_0)[name = string("query_states_1_cast_fp16")];
46
+ string key_states_1_pad_type_0 = const()[name = string("key_states_1_pad_type_0"), val = string("valid")];
47
+ tensor<int32, [2]> key_states_1_strides_0 = const()[name = string("key_states_1_strides_0"), val = tensor<int32, [2]>([1, 1])];
48
+ tensor<int32, [4]> key_states_1_pad_0 = const()[name = string("key_states_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
49
+ tensor<int32, [2]> key_states_1_dilations_0 = const()[name = string("key_states_1_dilations_0"), val = tensor<int32, [2]>([1, 1])];
50
+ int32 key_states_1_groups_0 = const()[name = string("key_states_1_groups_0"), val = int32(1)];
51
+ tensor<fp16, [128, 1024, 1, 1]> var_82_to_fp16 = const()[name = string("op_82_to_fp16"), val = tensor<fp16, [128, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(2236800)))];
52
+ tensor<fp16, [?, 128, 1, 3]> key_states_1_cast_fp16 = conv(dilations = key_states_1_dilations_0, groups = key_states_1_groups_0, pad = key_states_1_pad_0, pad_type = key_states_1_pad_type_0, strides = key_states_1_strides_0, weight = var_82_to_fp16, x = var_116_cast_fp16_0)[name = string("key_states_1_cast_fp16")];
53
+ string value_states_1_pad_type_0 = const()[name = string("value_states_1_pad_type_0"), val = string("valid")];
54
+ tensor<int32, [2]> value_states_1_strides_0 = const()[name = string("value_states_1_strides_0"), val = tensor<int32, [2]>([1, 1])];
55
+ tensor<int32, [4]> value_states_1_pad_0 = const()[name = string("value_states_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
56
+ tensor<int32, [2]> value_states_1_dilations_0 = const()[name = string("value_states_1_dilations_0"), val = tensor<int32, [2]>([1, 1])];
57
+ int32 value_states_1_groups_0 = const()[name = string("value_states_1_groups_0"), val = int32(1)];
58
+ tensor<fp16, [128, 1024, 1, 1]> var_83_to_fp16 = const()[name = string("op_83_to_fp16"), val = tensor<fp16, [128, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(2499008)))];
59
+ tensor<fp16, [?, 128, 1, 3]> value_states_1_cast_fp16 = conv(dilations = value_states_1_dilations_0, groups = value_states_1_groups_0, pad = value_states_1_pad_0, pad_type = value_states_1_pad_type_0, strides = value_states_1_strides_0, weight = var_83_to_fp16, x = var_116_cast_fp16_0)[name = string("value_states_1_cast_fp16")];
60
+ tensor<int32, [4]> concat_0x = const()[name = string("concat_0x"), val = tensor<int32, [4]>([-1, 16, 64, 3])];
61
+ tensor<fp16, [?, 16, 64, 3]> embed_1_cast_fp16 = reshape(shape = concat_0x, x = query_states_1_cast_fp16)[name = string("embed_1_cast_fp16")];
62
+ tensor<int32, [4]> concat_1x = const()[name = string("concat_1x"), val = tensor<int32, [4]>([-1, 2, 64, 3])];
63
+ tensor<fp16, [?, 2, 64, 3]> embed_3_cast_fp16 = reshape(shape = concat_1x, x = key_states_1_cast_fp16)[name = string("embed_3_cast_fp16")];
64
+ tensor<int32, [4]> concat_2x = const()[name = string("concat_2x"), val = tensor<int32, [4]>([-1, 2, 64, 3])];
65
+ tensor<fp16, [?, 2, 64, 3]> value_states_3_cast_fp16 = reshape(shape = concat_2x, x = value_states_1_cast_fp16)[name = string("value_states_3_cast_fp16")];
66
+ tensor<fp16, [64, 3]> cos_to_fp16 = const()[name = string("cos_to_fp16"), val = tensor<fp16, [64, 3]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(2761216)))];
67
+ tensor<fp16, [?, 16, 64, 3]> var_142_cast_fp16 = mul(x = embed_1_cast_fp16, y = cos_to_fp16)[name = string("op_142_cast_fp16")];
68
+ tensor<int32, [2]> var_143_split_sizes_0 = const()[name = string("op_143_split_sizes_0"), val = tensor<int32, [2]>([32, 32])];
69
+ int32 var_143_axis_0 = const()[name = string("op_143_axis_0"), val = int32(-2)];
70
+ tensor<fp16, [?, 16, 32, 3]> var_143_cast_fp16_0, tensor<fp16, [?, 16, 32, 3]> var_143_cast_fp16_1 = split(axis = var_143_axis_0, split_sizes = var_143_split_sizes_0, x = embed_1_cast_fp16)[name = string("op_143_cast_fp16")];
71
+ fp16 const_2_promoted_to_fp16 = const()[name = string("const_2_promoted_to_fp16"), val = fp16(-0x1p+0)];
72
+ tensor<fp16, [?, 16, 32, 3]> var_145_cast_fp16 = mul(x = var_143_cast_fp16_1, y = const_2_promoted_to_fp16)[name = string("op_145_cast_fp16")];
73
+ bool var_147_interleave_0 = const()[name = string("op_147_interleave_0"), val = bool(false)];
74
+ tensor<fp16, [?, 16, 64, 3]> var_147_cast_fp16 = concat(axis = var_86, interleave = var_147_interleave_0, values = (var_145_cast_fp16, var_143_cast_fp16_0))[name = string("op_147_cast_fp16")];
75
+ tensor<fp16, [64, 3]> sin_to_fp16 = const()[name = string("sin_to_fp16"), val = tensor<fp16, [64, 3]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(2761664)))];
76
+ tensor<fp16, [?, 16, 64, 3]> var_148_cast_fp16 = mul(x = var_147_cast_fp16, y = sin_to_fp16)[name = string("op_148_cast_fp16")];
77
+ tensor<fp16, [?, 16, 64, 3]> query_states_3_cast_fp16 = add(x = var_142_cast_fp16, y = var_148_cast_fp16)[name = string("query_states_3_cast_fp16")];
78
+ tensor<fp16, [?, 2, 64, 3]> var_150_cast_fp16 = mul(x = embed_3_cast_fp16, y = cos_to_fp16)[name = string("op_150_cast_fp16")];
79
+ tensor<int32, [2]> var_151_split_sizes_0 = const()[name = string("op_151_split_sizes_0"), val = tensor<int32, [2]>([32, 32])];
80
+ int32 var_151_axis_0 = const()[name = string("op_151_axis_0"), val = int32(-2)];
81
+ tensor<fp16, [?, 2, 32, 3]> var_151_cast_fp16_0, tensor<fp16, [?, 2, 32, 3]> var_151_cast_fp16_1 = split(axis = var_151_axis_0, split_sizes = var_151_split_sizes_0, x = embed_3_cast_fp16)[name = string("op_151_cast_fp16")];
82
+ fp16 const_3_promoted_to_fp16 = const()[name = string("const_3_promoted_to_fp16"), val = fp16(-0x1p+0)];
83
+ tensor<fp16, [?, 2, 32, 3]> var_153_cast_fp16 = mul(x = var_151_cast_fp16_1, y = const_3_promoted_to_fp16)[name = string("op_153_cast_fp16")];
84
+ bool var_155_interleave_0 = const()[name = string("op_155_interleave_0"), val = bool(false)];
85
+ tensor<fp16, [?, 2, 64, 3]> var_155_cast_fp16 = concat(axis = var_86, interleave = var_155_interleave_0, values = (var_153_cast_fp16, var_151_cast_fp16_0))[name = string("op_155_cast_fp16")];
86
+ tensor<fp16, [?, 2, 64, 3]> var_156_cast_fp16 = mul(x = var_155_cast_fp16, y = sin_to_fp16)[name = string("op_156_cast_fp16")];
87
+ tensor<fp16, [?, 2, 64, 3]> key_states_3_cast_fp16 = add(x = var_150_cast_fp16, y = var_156_cast_fp16)[name = string("key_states_3_cast_fp16")];
88
+ tensor<int32, [2]> var_161_split_sizes_0 = const()[name = string("op_161_split_sizes_0"), val = tensor<int32, [2]>([8, 8])];
89
+ int32 var_161_axis_0 = const()[name = string("op_161_axis_0"), val = int32(1)];
90
+ tensor<fp16, [?, 8, 64, 3]> var_161_cast_fp16_0, tensor<fp16, [?, 8, 64, 3]> var_161_cast_fp16_1 = split(axis = var_161_axis_0, split_sizes = var_161_split_sizes_0, x = query_states_3_cast_fp16)[name = string("op_161_cast_fp16")];
91
+ tensor<int32, [2]> var_163_split_sizes_0 = const()[name = string("op_163_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
92
+ int32 var_163_axis_0 = const()[name = string("op_163_axis_0"), val = int32(1)];
93
+ tensor<fp16, [?, 1, 64, 3]> var_163_cast_fp16_0, tensor<fp16, [?, 1, 64, 3]> var_163_cast_fp16_1 = split(axis = var_163_axis_0, split_sizes = var_163_split_sizes_0, x = key_states_3_cast_fp16)[name = string("op_163_cast_fp16")];
94
+ tensor<int32, [2]> var_165_split_sizes_0 = const()[name = string("op_165_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
95
+ int32 var_165_axis_0 = const()[name = string("op_165_axis_0"), val = int32(1)];
96
+ tensor<fp16, [?, 1, 64, 3]> var_165_cast_fp16_0, tensor<fp16, [?, 1, 64, 3]> var_165_cast_fp16_1 = split(axis = var_165_axis_0, split_sizes = var_165_split_sizes_0, x = value_states_3_cast_fp16)[name = string("op_165_cast_fp16")];
97
+ bool attn_weights_1_transpose_x_1 = const()[name = string("attn_weights_1_transpose_x_1"), val = bool(true)];
98
+ bool attn_weights_1_transpose_y_1 = const()[name = string("attn_weights_1_transpose_y_1"), val = bool(false)];
99
+ tensor<fp16, [?, 8, 3, 3]> attn_weights_1_cast_fp16 = matmul(transpose_x = attn_weights_1_transpose_x_1, transpose_y = attn_weights_1_transpose_y_1, x = var_163_cast_fp16_0, y = var_161_cast_fp16_0)[name = string("attn_weights_1_cast_fp16")];
100
+ fp16 _inversed_attn_weights_3_y_0_to_fp16 = const()[name = string("_inversed_attn_weights_3_y_0_to_fp16"), val = fp16(0x1p-3)];
101
+ tensor<fp16, [?, 8, 3, 3]> _inversed_attn_weights_3_cast_fp16 = mul(x = attn_weights_1_cast_fp16, y = _inversed_attn_weights_3_y_0_to_fp16)[name = string("_inversed_attn_weights_3_cast_fp16")];
102
+ tensor<fp16, [?, 8, 3, 3]> attn_weights_5_cast_fp16 = softmax(axis = var_95, x = _inversed_attn_weights_3_cast_fp16)[name = string("attn_weights_5_cast_fp16")];
103
+ bool var_172_transpose_x_0 = const()[name = string("op_172_transpose_x_0"), val = bool(false)];
104
+ bool var_172_transpose_y_0 = const()[name = string("op_172_transpose_y_0"), val = bool(false)];
105
+ tensor<fp16, [?, 8, 64, 3]> var_172_cast_fp16 = matmul(transpose_x = var_172_transpose_x_0, transpose_y = var_172_transpose_y_0, x = var_165_cast_fp16_0, y = attn_weights_5_cast_fp16)[name = string("op_172_cast_fp16")];
106
+ bool attn_weights_7_transpose_x_1 = const()[name = string("attn_weights_7_transpose_x_1"), val = bool(true)];
107
+ bool attn_weights_7_transpose_y_1 = const()[name = string("attn_weights_7_transpose_y_1"), val = bool(false)];
108
+ tensor<fp16, [?, 8, 3, 3]> attn_weights_7_cast_fp16 = matmul(transpose_x = attn_weights_7_transpose_x_1, transpose_y = attn_weights_7_transpose_y_1, x = var_163_cast_fp16_1, y = var_161_cast_fp16_1)[name = string("attn_weights_7_cast_fp16")];
109
+ fp16 _inversed_attn_weights_9_y_0_to_fp16 = const()[name = string("_inversed_attn_weights_9_y_0_to_fp16"), val = fp16(0x1p-3)];
110
+ tensor<fp16, [?, 8, 3, 3]> _inversed_attn_weights_9_cast_fp16 = mul(x = attn_weights_7_cast_fp16, y = _inversed_attn_weights_9_y_0_to_fp16)[name = string("_inversed_attn_weights_9_cast_fp16")];
111
+ tensor<fp16, [?, 8, 3, 3]> attn_weights_11_cast_fp16 = softmax(axis = var_95, x = _inversed_attn_weights_9_cast_fp16)[name = string("attn_weights_11_cast_fp16")];
112
+ bool attn_output_1_transpose_x_0 = const()[name = string("attn_output_1_transpose_x_0"), val = bool(false)];
113
+ bool attn_output_1_transpose_y_0 = const()[name = string("attn_output_1_transpose_y_0"), val = bool(false)];
114
+ tensor<fp16, [?, 8, 64, 3]> attn_output_1_cast_fp16 = matmul(transpose_x = attn_output_1_transpose_x_0, transpose_y = attn_output_1_transpose_y_0, x = var_165_cast_fp16_1, y = attn_weights_11_cast_fp16)[name = string("attn_output_1_cast_fp16")];
115
+ bool attn_output_3_interleave_0 = const()[name = string("attn_output_3_interleave_0"), val = bool(false)];
116
+ tensor<fp16, [?, 16, 64, 3]> attn_output_3_cast_fp16 = concat(axis = var_90, interleave = attn_output_3_interleave_0, values = (var_172_cast_fp16, attn_output_1_cast_fp16))[name = string("attn_output_3_cast_fp16")];
117
+ tensor<int32, [4]> concat_3x = const()[name = string("concat_3x"), val = tensor<int32, [4]>([-1, 1024, 1, 3])];
118
+ tensor<fp16, [?, 1024, 1, 3]> x_11_cast_fp16 = reshape(shape = concat_3x, x = attn_output_3_cast_fp16)[name = string("x_11_cast_fp16")];
119
+ string hidden_states_3_pad_type_0 = const()[name = string("hidden_states_3_pad_type_0"), val = string("valid")];
120
+ tensor<int32, [2]> hidden_states_3_strides_0 = const()[name = string("hidden_states_3_strides_0"), val = tensor<int32, [2]>([1, 1])];
121
+ tensor<int32, [4]> hidden_states_3_pad_0 = const()[name = string("hidden_states_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
122
+ tensor<int32, [2]> hidden_states_3_dilations_0 = const()[name = string("hidden_states_3_dilations_0"), val = tensor<int32, [2]>([1, 1])];
123
+ int32 hidden_states_3_groups_0 = const()[name = string("hidden_states_3_groups_0"), val = int32(1)];
124
+ tensor<fp16, [1024, 1024, 1, 1]> var_89_to_fp16 = const()[name = string("op_89_to_fp16"), val = tensor<fp16, [1024, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(2762112)))];
125
+ tensor<fp16, [?, 1024, 1, 3]> hidden_states_3_cast_fp16 = conv(dilations = hidden_states_3_dilations_0, groups = hidden_states_3_groups_0, pad = hidden_states_3_pad_0, pad_type = hidden_states_3_pad_type_0, strides = hidden_states_3_strides_0, weight = var_89_to_fp16, x = x_11_cast_fp16)[name = string("hidden_states_3_cast_fp16")];
126
+ tensor<fp16, [?, 1024, 1, 3]> x_13_cast_fp16 = add(x = x_5_cast_fp16, y = hidden_states_3_cast_fp16)[name = string("x_13_cast_fp16")];
127
+ fp16 const_4_promoted_to_fp16 = const()[name = string("const_4_promoted_to_fp16"), val = fp16(-0x1p+0)];
128
+ tensor<fp16, [?, 1024, 1, 3]> var_191_cast_fp16 = mul(x = x_13_cast_fp16, y = const_4_promoted_to_fp16)[name = string("op_191_cast_fp16")];
129
+ bool x_15_interleave_0 = const()[name = string("x_15_interleave_0"), val = bool(false)];
130
+ tensor<fp16, [?, 2048, 1, 3]> x_15_cast_fp16 = concat(axis = var_90, interleave = x_15_interleave_0, values = (x_13_cast_fp16, var_191_cast_fp16))[name = string("x_15_cast_fp16")];
131
+ tensor<int32, [1]> out_7_axes_0 = const()[name = string("out_7_axes_0"), val = tensor<int32, [1]>([1])];
132
+ fp16 var_201_to_fp16 = const()[name = string("op_201_to_fp16"), val = fp16(0x1.5p-17)];
133
+ tensor<fp16, [?, 2048, 1, 3]> out_7_cast_fp16 = layer_norm(axes = out_7_axes_0, epsilon = var_201_to_fp16, x = x_15_cast_fp16)[name = string("out_7_cast_fp16")];
134
+ tensor<fp16, [1, 2048, 1, 1]> layer_encoder_layers_0_post_attention_layernorm_weight_to_fp16 = const()[name = string("layer_encoder_layers_0_post_attention_layernorm_weight_to_fp16"), val = tensor<fp16, [1, 2048, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4859328)))];
135
+ tensor<fp16, [?, 2048, 1, 3]> out_9_cast_fp16 = mul(x = out_7_cast_fp16, y = layer_encoder_layers_0_post_attention_layernorm_weight_to_fp16)[name = string("out_9_cast_fp16")];
136
+ tensor<int32, [2]> var_207_split_sizes_0 = const()[name = string("op_207_split_sizes_0"), val = tensor<int32, [2]>([1024, 1024])];
137
+ int32 var_207_axis_0 = const()[name = string("op_207_axis_0"), val = int32(1)];
138
+ tensor<fp16, [?, 1024, 1, 3]> var_207_cast_fp16_0, tensor<fp16, [?, 1024, 1, 3]> var_207_cast_fp16_1 = split(axis = var_207_axis_0, split_sizes = var_207_split_sizes_0, x = out_9_cast_fp16)[name = string("op_207_cast_fp16")];
139
+ string input_1_pad_type_0 = const()[name = string("input_1_pad_type_0"), val = string("valid")];
140
+ tensor<int32, [2]> input_1_strides_0 = const()[name = string("input_1_strides_0"), val = tensor<int32, [2]>([1, 1])];
141
+ tensor<int32, [4]> input_1_pad_0 = const()[name = string("input_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
142
+ tensor<int32, [2]> input_1_dilations_0 = const()[name = string("input_1_dilations_0"), val = tensor<int32, [2]>([1, 1])];
143
+ int32 input_1_groups_0 = const()[name = string("input_1_groups_0"), val = int32(1)];
144
+ tensor<fp16, [4096, 1024, 1, 1]> var_76_to_fp16 = const()[name = string("op_76_to_fp16"), val = tensor<fp16, [4096, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4863488)))];
145
+ tensor<fp16, [?, 4096, 1, 3]> input_1_cast_fp16 = conv(dilations = input_1_dilations_0, groups = input_1_groups_0, pad = input_1_pad_0, pad_type = input_1_pad_type_0, strides = input_1_strides_0, weight = var_76_to_fp16, x = var_207_cast_fp16_0)[name = string("input_1_cast_fp16")];
146
+ tensor<fp16, [?, 4096, 1, 3]> var_215_cast_fp16 = silu(x = input_1_cast_fp16)[name = string("op_215_cast_fp16")];
147
+ string var_220_pad_type_0 = const()[name = string("op_220_pad_type_0"), val = string("valid")];
148
+ tensor<int32, [2]> var_220_strides_0 = const()[name = string("op_220_strides_0"), val = tensor<int32, [2]>([1, 1])];
149
+ tensor<int32, [4]> var_220_pad_0 = const()[name = string("op_220_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
150
+ tensor<int32, [2]> var_220_dilations_0 = const()[name = string("op_220_dilations_0"), val = tensor<int32, [2]>([1, 1])];
151
+ int32 var_220_groups_0 = const()[name = string("op_220_groups_0"), val = int32(1)];
152
+ tensor<fp16, [4096, 1024, 1, 1]> var_77_to_fp16 = const()[name = string("op_77_to_fp16"), val = tensor<fp16, [4096, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(13252160)))];
153
+ tensor<fp16, [?, 4096, 1, 3]> var_220_cast_fp16 = conv(dilations = var_220_dilations_0, groups = var_220_groups_0, pad = var_220_pad_0, pad_type = var_220_pad_type_0, strides = var_220_strides_0, weight = var_77_to_fp16, x = var_207_cast_fp16_0)[name = string("op_220_cast_fp16")];
154
+ tensor<fp16, [?, 4096, 1, 3]> x_21_cast_fp16 = mul(x = var_215_cast_fp16, y = var_220_cast_fp16)[name = string("x_21_cast_fp16")];
155
+ string hidden_states_5_pad_type_0 = const()[name = string("hidden_states_5_pad_type_0"), val = string("valid")];
156
+ tensor<int32, [2]> hidden_states_5_strides_0 = const()[name = string("hidden_states_5_strides_0"), val = tensor<int32, [2]>([1, 1])];
157
+ tensor<int32, [4]> hidden_states_5_pad_0 = const()[name = string("hidden_states_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
158
+ tensor<int32, [2]> hidden_states_5_dilations_0 = const()[name = string("hidden_states_5_dilations_0"), val = tensor<int32, [2]>([1, 1])];
159
+ int32 hidden_states_5_groups_0 = const()[name = string("hidden_states_5_groups_0"), val = int32(1)];
160
+ tensor<fp16, [1024, 4096, 1, 1]> var_78_to_fp16 = const()[name = string("op_78_to_fp16"), val = tensor<fp16, [1024, 4096, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(21640832)))];
161
+ tensor<fp16, [?, 1024, 1, 3]> hidden_states_5_cast_fp16 = conv(dilations = hidden_states_5_dilations_0, groups = hidden_states_5_groups_0, pad = hidden_states_5_pad_0, pad_type = hidden_states_5_pad_type_0, strides = hidden_states_5_strides_0, weight = var_78_to_fp16, x = x_21_cast_fp16)[name = string("hidden_states_5_cast_fp16")];
162
+ tensor<fp16, [?, 1024, 1, 3]> x_23_cast_fp16 = add(x = x_13_cast_fp16, y = hidden_states_5_cast_fp16)[name = string("x_23_cast_fp16")];
163
+ int32 var_238 = const()[name = string("op_238"), val = int32(-2)];
164
+ int32 var_242 = const()[name = string("op_242"), val = int32(1)];
165
+ int32 var_247 = const()[name = string("op_247"), val = int32(2)];
166
+ fp16 const_5_promoted_to_fp16 = const()[name = string("const_5_promoted_to_fp16"), val = fp16(-0x1p+0)];
167
+ tensor<fp16, [?, 1024, 1, 3]> var_252_cast_fp16 = mul(x = x_23_cast_fp16, y = const_5_promoted_to_fp16)[name = string("op_252_cast_fp16")];
168
+ bool x_25_interleave_0 = const()[name = string("x_25_interleave_0"), val = bool(false)];
169
+ tensor<fp16, [?, 2048, 1, 3]> x_25_cast_fp16 = concat(axis = var_242, interleave = x_25_interleave_0, values = (x_23_cast_fp16, var_252_cast_fp16))[name = string("x_25_cast_fp16")];
170
+ tensor<int32, [1]> out_13_axes_0 = const()[name = string("out_13_axes_0"), val = tensor<int32, [1]>([1])];
171
+ fp16 var_262_to_fp16 = const()[name = string("op_262_to_fp16"), val = fp16(0x1.5p-17)];
172
+ tensor<fp16, [?, 2048, 1, 3]> out_13_cast_fp16 = layer_norm(axes = out_13_axes_0, epsilon = var_262_to_fp16, x = x_25_cast_fp16)[name = string("out_13_cast_fp16")];
173
+ tensor<fp16, [1, 2048, 1, 1]> layer_encoder_layers_1_input_layernorm_weight_to_fp16 = const()[name = string("layer_encoder_layers_1_input_layernorm_weight_to_fp16"), val = tensor<fp16, [1, 2048, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(30029504)))];
174
+ tensor<fp16, [?, 2048, 1, 3]> out_15_cast_fp16 = mul(x = out_13_cast_fp16, y = layer_encoder_layers_1_input_layernorm_weight_to_fp16)[name = string("out_15_cast_fp16")];
175
+ tensor<int32, [2]> var_268_split_sizes_0 = const()[name = string("op_268_split_sizes_0"), val = tensor<int32, [2]>([1024, 1024])];
176
+ int32 var_268_axis_0 = const()[name = string("op_268_axis_0"), val = int32(1)];
177
+ tensor<fp16, [?, 1024, 1, 3]> var_268_cast_fp16_0, tensor<fp16, [?, 1024, 1, 3]> var_268_cast_fp16_1 = split(axis = var_268_axis_0, split_sizes = var_268_split_sizes_0, x = out_15_cast_fp16)[name = string("op_268_cast_fp16")];
178
+ string query_states_7_pad_type_0 = const()[name = string("query_states_7_pad_type_0"), val = string("valid")];
179
+ tensor<int32, [2]> query_states_7_strides_0 = const()[name = string("query_states_7_strides_0"), val = tensor<int32, [2]>([1, 1])];
180
+ tensor<int32, [4]> query_states_7_pad_0 = const()[name = string("query_states_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
181
+ tensor<int32, [2]> query_states_7_dilations_0 = const()[name = string("query_states_7_dilations_0"), val = tensor<int32, [2]>([1, 1])];
182
+ int32 query_states_7_groups_0 = const()[name = string("query_states_7_groups_0"), val = int32(1)];
183
+ tensor<fp16, [1024, 1024, 1, 1]> var_233_to_fp16 = const()[name = string("op_233_to_fp16"), val = tensor<fp16, [1024, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(30033664)))];
184
+ tensor<fp16, [?, 1024, 1, 3]> query_states_7_cast_fp16 = conv(dilations = query_states_7_dilations_0, groups = query_states_7_groups_0, pad = query_states_7_pad_0, pad_type = query_states_7_pad_type_0, strides = query_states_7_strides_0, weight = var_233_to_fp16, x = var_268_cast_fp16_0)[name = string("query_states_7_cast_fp16")];
185
+ string key_states_7_pad_type_0 = const()[name = string("key_states_7_pad_type_0"), val = string("valid")];
186
+ tensor<int32, [2]> key_states_7_strides_0 = const()[name = string("key_states_7_strides_0"), val = tensor<int32, [2]>([1, 1])];
187
+ tensor<int32, [4]> key_states_7_pad_0 = const()[name = string("key_states_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
188
+ tensor<int32, [2]> key_states_7_dilations_0 = const()[name = string("key_states_7_dilations_0"), val = tensor<int32, [2]>([1, 1])];
189
+ int32 key_states_7_groups_0 = const()[name = string("key_states_7_groups_0"), val = int32(1)];
190
+ tensor<fp16, [128, 1024, 1, 1]> var_234_to_fp16 = const()[name = string("op_234_to_fp16"), val = tensor<fp16, [128, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(32130880)))];
191
+ tensor<fp16, [?, 128, 1, 3]> key_states_7_cast_fp16 = conv(dilations = key_states_7_dilations_0, groups = key_states_7_groups_0, pad = key_states_7_pad_0, pad_type = key_states_7_pad_type_0, strides = key_states_7_strides_0, weight = var_234_to_fp16, x = var_268_cast_fp16_0)[name = string("key_states_7_cast_fp16")];
192
+ string value_states_7_pad_type_0 = const()[name = string("value_states_7_pad_type_0"), val = string("valid")];
193
+ tensor<int32, [2]> value_states_7_strides_0 = const()[name = string("value_states_7_strides_0"), val = tensor<int32, [2]>([1, 1])];
194
+ tensor<int32, [4]> value_states_7_pad_0 = const()[name = string("value_states_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
195
+ tensor<int32, [2]> value_states_7_dilations_0 = const()[name = string("value_states_7_dilations_0"), val = tensor<int32, [2]>([1, 1])];
196
+ int32 value_states_7_groups_0 = const()[name = string("value_states_7_groups_0"), val = int32(1)];
197
+ tensor<fp16, [128, 1024, 1, 1]> var_235_to_fp16 = const()[name = string("op_235_to_fp16"), val = tensor<fp16, [128, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(32393088)))];
198
+ tensor<fp16, [?, 128, 1, 3]> value_states_7_cast_fp16 = conv(dilations = value_states_7_dilations_0, groups = value_states_7_groups_0, pad = value_states_7_pad_0, pad_type = value_states_7_pad_type_0, strides = value_states_7_strides_0, weight = var_235_to_fp16, x = var_268_cast_fp16_0)[name = string("value_states_7_cast_fp16")];
199
+ tensor<int32, [4]> concat_4x = const()[name = string("concat_4x"), val = tensor<int32, [4]>([-1, 16, 64, 3])];
200
+ tensor<fp16, [?, 16, 64, 3]> embed_5_cast_fp16 = reshape(shape = concat_4x, x = query_states_7_cast_fp16)[name = string("embed_5_cast_fp16")];
201
+ tensor<int32, [4]> concat_5x = const()[name = string("concat_5x"), val = tensor<int32, [4]>([-1, 2, 64, 3])];
202
+ tensor<fp16, [?, 2, 64, 3]> embed_7_cast_fp16 = reshape(shape = concat_5x, x = key_states_7_cast_fp16)[name = string("embed_7_cast_fp16")];
203
+ tensor<int32, [4]> concat_6x = const()[name = string("concat_6x"), val = tensor<int32, [4]>([-1, 2, 64, 3])];
204
+ tensor<fp16, [?, 2, 64, 3]> value_states_9_cast_fp16 = reshape(shape = concat_6x, x = value_states_7_cast_fp16)[name = string("value_states_9_cast_fp16")];
205
+ tensor<fp16, [?, 16, 64, 3]> var_294_cast_fp16 = mul(x = embed_5_cast_fp16, y = cos_to_fp16)[name = string("op_294_cast_fp16")];
206
+ tensor<int32, [2]> var_295_split_sizes_0 = const()[name = string("op_295_split_sizes_0"), val = tensor<int32, [2]>([32, 32])];
207
+ int32 var_295_axis_0 = const()[name = string("op_295_axis_0"), val = int32(-2)];
208
+ tensor<fp16, [?, 16, 32, 3]> var_295_cast_fp16_0, tensor<fp16, [?, 16, 32, 3]> var_295_cast_fp16_1 = split(axis = var_295_axis_0, split_sizes = var_295_split_sizes_0, x = embed_5_cast_fp16)[name = string("op_295_cast_fp16")];
209
+ fp16 const_6_promoted_to_fp16 = const()[name = string("const_6_promoted_to_fp16"), val = fp16(-0x1p+0)];
210
+ tensor<fp16, [?, 16, 32, 3]> var_297_cast_fp16 = mul(x = var_295_cast_fp16_1, y = const_6_promoted_to_fp16)[name = string("op_297_cast_fp16")];
211
+ bool var_299_interleave_0 = const()[name = string("op_299_interleave_0"), val = bool(false)];
212
+ tensor<fp16, [?, 16, 64, 3]> var_299_cast_fp16 = concat(axis = var_238, interleave = var_299_interleave_0, values = (var_297_cast_fp16, var_295_cast_fp16_0))[name = string("op_299_cast_fp16")];
213
+ tensor<fp16, [?, 16, 64, 3]> var_300_cast_fp16 = mul(x = var_299_cast_fp16, y = sin_to_fp16)[name = string("op_300_cast_fp16")];
214
+ tensor<fp16, [?, 16, 64, 3]> query_states_9_cast_fp16 = add(x = var_294_cast_fp16, y = var_300_cast_fp16)[name = string("query_states_9_cast_fp16")];
215
+ tensor<fp16, [?, 2, 64, 3]> var_302_cast_fp16 = mul(x = embed_7_cast_fp16, y = cos_to_fp16)[name = string("op_302_cast_fp16")];
216
+ tensor<int32, [2]> var_303_split_sizes_0 = const()[name = string("op_303_split_sizes_0"), val = tensor<int32, [2]>([32, 32])];
217
+ int32 var_303_axis_0 = const()[name = string("op_303_axis_0"), val = int32(-2)];
218
+ tensor<fp16, [?, 2, 32, 3]> var_303_cast_fp16_0, tensor<fp16, [?, 2, 32, 3]> var_303_cast_fp16_1 = split(axis = var_303_axis_0, split_sizes = var_303_split_sizes_0, x = embed_7_cast_fp16)[name = string("op_303_cast_fp16")];
219
+ fp16 const_7_promoted_to_fp16 = const()[name = string("const_7_promoted_to_fp16"), val = fp16(-0x1p+0)];
220
+ tensor<fp16, [?, 2, 32, 3]> var_305_cast_fp16 = mul(x = var_303_cast_fp16_1, y = const_7_promoted_to_fp16)[name = string("op_305_cast_fp16")];
221
+ bool var_307_interleave_0 = const()[name = string("op_307_interleave_0"), val = bool(false)];
222
+ tensor<fp16, [?, 2, 64, 3]> var_307_cast_fp16 = concat(axis = var_238, interleave = var_307_interleave_0, values = (var_305_cast_fp16, var_303_cast_fp16_0))[name = string("op_307_cast_fp16")];
223
+ tensor<fp16, [?, 2, 64, 3]> var_308_cast_fp16 = mul(x = var_307_cast_fp16, y = sin_to_fp16)[name = string("op_308_cast_fp16")];
224
+ tensor<fp16, [?, 2, 64, 3]> key_states_9_cast_fp16 = add(x = var_302_cast_fp16, y = var_308_cast_fp16)[name = string("key_states_9_cast_fp16")];
225
+ tensor<int32, [2]> var_313_split_sizes_0 = const()[name = string("op_313_split_sizes_0"), val = tensor<int32, [2]>([8, 8])];
226
+ int32 var_313_axis_0 = const()[name = string("op_313_axis_0"), val = int32(1)];
227
+ tensor<fp16, [?, 8, 64, 3]> var_313_cast_fp16_0, tensor<fp16, [?, 8, 64, 3]> var_313_cast_fp16_1 = split(axis = var_313_axis_0, split_sizes = var_313_split_sizes_0, x = query_states_9_cast_fp16)[name = string("op_313_cast_fp16")];
228
+ tensor<int32, [2]> var_315_split_sizes_0 = const()[name = string("op_315_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
229
+ int32 var_315_axis_0 = const()[name = string("op_315_axis_0"), val = int32(1)];
230
+ tensor<fp16, [?, 1, 64, 3]> var_315_cast_fp16_0, tensor<fp16, [?, 1, 64, 3]> var_315_cast_fp16_1 = split(axis = var_315_axis_0, split_sizes = var_315_split_sizes_0, x = key_states_9_cast_fp16)[name = string("op_315_cast_fp16")];
231
+ tensor<int32, [2]> var_317_split_sizes_0 = const()[name = string("op_317_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
232
+ int32 var_317_axis_0 = const()[name = string("op_317_axis_0"), val = int32(1)];
233
+ tensor<fp16, [?, 1, 64, 3]> var_317_cast_fp16_0, tensor<fp16, [?, 1, 64, 3]> var_317_cast_fp16_1 = split(axis = var_317_axis_0, split_sizes = var_317_split_sizes_0, x = value_states_9_cast_fp16)[name = string("op_317_cast_fp16")];
234
+ bool attn_weights_13_transpose_x_1 = const()[name = string("attn_weights_13_transpose_x_1"), val = bool(true)];
235
+ bool attn_weights_13_transpose_y_1 = const()[name = string("attn_weights_13_transpose_y_1"), val = bool(false)];
236
+ tensor<fp16, [?, 8, 3, 3]> attn_weights_13_cast_fp16 = matmul(transpose_x = attn_weights_13_transpose_x_1, transpose_y = attn_weights_13_transpose_y_1, x = var_315_cast_fp16_0, y = var_313_cast_fp16_0)[name = string("attn_weights_13_cast_fp16")];
237
+ fp16 _inversed_attn_weights_15_y_0_to_fp16 = const()[name = string("_inversed_attn_weights_15_y_0_to_fp16"), val = fp16(0x1p-3)];
238
+ tensor<fp16, [?, 8, 3, 3]> _inversed_attn_weights_15_cast_fp16 = mul(x = attn_weights_13_cast_fp16, y = _inversed_attn_weights_15_y_0_to_fp16)[name = string("_inversed_attn_weights_15_cast_fp16")];
239
+ tensor<fp16, [?, 8, 3, 3]> attn_weights_17_cast_fp16 = softmax(axis = var_247, x = _inversed_attn_weights_15_cast_fp16)[name = string("attn_weights_17_cast_fp16")];
240
+ bool var_324_transpose_x_0 = const()[name = string("op_324_transpose_x_0"), val = bool(false)];
241
+ bool var_324_transpose_y_0 = const()[name = string("op_324_transpose_y_0"), val = bool(false)];
242
+ tensor<fp16, [?, 8, 64, 3]> var_324_cast_fp16 = matmul(transpose_x = var_324_transpose_x_0, transpose_y = var_324_transpose_y_0, x = var_317_cast_fp16_0, y = attn_weights_17_cast_fp16)[name = string("op_324_cast_fp16")];
243
+ bool attn_weights_19_transpose_x_1 = const()[name = string("attn_weights_19_transpose_x_1"), val = bool(true)];
244
+ bool attn_weights_19_transpose_y_1 = const()[name = string("attn_weights_19_transpose_y_1"), val = bool(false)];
245
+ tensor<fp16, [?, 8, 3, 3]> attn_weights_19_cast_fp16 = matmul(transpose_x = attn_weights_19_transpose_x_1, transpose_y = attn_weights_19_transpose_y_1, x = var_315_cast_fp16_1, y = var_313_cast_fp16_1)[name = string("attn_weights_19_cast_fp16")];
246
+ fp16 _inversed_attn_weights_21_y_0_to_fp16 = const()[name = string("_inversed_attn_weights_21_y_0_to_fp16"), val = fp16(0x1p-3)];
247
+ tensor<fp16, [?, 8, 3, 3]> _inversed_attn_weights_21_cast_fp16 = mul(x = attn_weights_19_cast_fp16, y = _inversed_attn_weights_21_y_0_to_fp16)[name = string("_inversed_attn_weights_21_cast_fp16")];
248
+ tensor<fp16, [?, 8, 3, 3]> attn_weights_23_cast_fp16 = softmax(axis = var_247, x = _inversed_attn_weights_21_cast_fp16)[name = string("attn_weights_23_cast_fp16")];
249
+ bool attn_output_5_transpose_x_0 = const()[name = string("attn_output_5_transpose_x_0"), val = bool(false)];
250
+ bool attn_output_5_transpose_y_0 = const()[name = string("attn_output_5_transpose_y_0"), val = bool(false)];
251
+ tensor<fp16, [?, 8, 64, 3]> attn_output_5_cast_fp16 = matmul(transpose_x = attn_output_5_transpose_x_0, transpose_y = attn_output_5_transpose_y_0, x = var_317_cast_fp16_1, y = attn_weights_23_cast_fp16)[name = string("attn_output_5_cast_fp16")];
252
+ bool attn_output_7_interleave_0 = const()[name = string("attn_output_7_interleave_0"), val = bool(false)];
253
+ tensor<fp16, [?, 16, 64, 3]> attn_output_7_cast_fp16 = concat(axis = var_242, interleave = attn_output_7_interleave_0, values = (var_324_cast_fp16, attn_output_5_cast_fp16))[name = string("attn_output_7_cast_fp16")];
254
+ tensor<int32, [4]> concat_7x = const()[name = string("concat_7x"), val = tensor<int32, [4]>([-1, 1024, 1, 3])];
255
+ tensor<fp16, [?, 1024, 1, 3]> x_29_cast_fp16 = reshape(shape = concat_7x, x = attn_output_7_cast_fp16)[name = string("x_29_cast_fp16")];
256
+ string hidden_states_9_pad_type_0 = const()[name = string("hidden_states_9_pad_type_0"), val = string("valid")];
257
+ tensor<int32, [2]> hidden_states_9_strides_0 = const()[name = string("hidden_states_9_strides_0"), val = tensor<int32, [2]>([1, 1])];
258
+ tensor<int32, [4]> hidden_states_9_pad_0 = const()[name = string("hidden_states_9_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
259
+ tensor<int32, [2]> hidden_states_9_dilations_0 = const()[name = string("hidden_states_9_dilations_0"), val = tensor<int32, [2]>([1, 1])];
260
+ int32 hidden_states_9_groups_0 = const()[name = string("hidden_states_9_groups_0"), val = int32(1)];
261
+ tensor<fp16, [1024, 1024, 1, 1]> var_241_to_fp16 = const()[name = string("op_241_to_fp16"), val = tensor<fp16, [1024, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(32655296)))];
262
+ tensor<fp16, [?, 1024, 1, 3]> hidden_states_9_cast_fp16 = conv(dilations = hidden_states_9_dilations_0, groups = hidden_states_9_groups_0, pad = hidden_states_9_pad_0, pad_type = hidden_states_9_pad_type_0, strides = hidden_states_9_strides_0, weight = var_241_to_fp16, x = x_29_cast_fp16)[name = string("hidden_states_9_cast_fp16")];
263
+ tensor<fp16, [?, 1024, 1, 3]> x_31_cast_fp16 = add(x = x_23_cast_fp16, y = hidden_states_9_cast_fp16)[name = string("x_31_cast_fp16")];
264
+ fp16 const_8_promoted_to_fp16 = const()[name = string("const_8_promoted_to_fp16"), val = fp16(-0x1p+0)];
265
+ tensor<fp16, [?, 1024, 1, 3]> var_343_cast_fp16 = mul(x = x_31_cast_fp16, y = const_8_promoted_to_fp16)[name = string("op_343_cast_fp16")];
266
+ bool x_33_interleave_0 = const()[name = string("x_33_interleave_0"), val = bool(false)];
267
+ tensor<fp16, [?, 2048, 1, 3]> x_33_cast_fp16 = concat(axis = var_242, interleave = x_33_interleave_0, values = (x_31_cast_fp16, var_343_cast_fp16))[name = string("x_33_cast_fp16")];
268
+ tensor<int32, [1]> out_19_axes_0 = const()[name = string("out_19_axes_0"), val = tensor<int32, [1]>([1])];
269
+ fp16 var_353_to_fp16 = const()[name = string("op_353_to_fp16"), val = fp16(0x1.5p-17)];
270
+ tensor<fp16, [?, 2048, 1, 3]> out_19_cast_fp16 = layer_norm(axes = out_19_axes_0, epsilon = var_353_to_fp16, x = x_33_cast_fp16)[name = string("out_19_cast_fp16")];
271
+ tensor<fp16, [1, 2048, 1, 1]> layer_encoder_layers_1_post_attention_layernorm_weight_to_fp16 = const()[name = string("layer_encoder_layers_1_post_attention_layernorm_weight_to_fp16"), val = tensor<fp16, [1, 2048, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(34752512)))];
272
+ tensor<fp16, [?, 2048, 1, 3]> out_21_cast_fp16 = mul(x = out_19_cast_fp16, y = layer_encoder_layers_1_post_attention_layernorm_weight_to_fp16)[name = string("out_21_cast_fp16")];
273
+ tensor<int32, [2]> var_359_split_sizes_0 = const()[name = string("op_359_split_sizes_0"), val = tensor<int32, [2]>([1024, 1024])];
274
+ int32 var_359_axis_0 = const()[name = string("op_359_axis_0"), val = int32(1)];
275
+ tensor<fp16, [?, 1024, 1, 3]> var_359_cast_fp16_0, tensor<fp16, [?, 1024, 1, 3]> var_359_cast_fp16_1 = split(axis = var_359_axis_0, split_sizes = var_359_split_sizes_0, x = out_21_cast_fp16)[name = string("op_359_cast_fp16")];
276
+ string input_3_pad_type_0 = const()[name = string("input_3_pad_type_0"), val = string("valid")];
277
+ tensor<int32, [2]> input_3_strides_0 = const()[name = string("input_3_strides_0"), val = tensor<int32, [2]>([1, 1])];
278
+ tensor<int32, [4]> input_3_pad_0 = const()[name = string("input_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
279
+ tensor<int32, [2]> input_3_dilations_0 = const()[name = string("input_3_dilations_0"), val = tensor<int32, [2]>([1, 1])];
280
+ int32 input_3_groups_0 = const()[name = string("input_3_groups_0"), val = int32(1)];
281
+ tensor<fp16, [4096, 1024, 1, 1]> var_228_to_fp16 = const()[name = string("op_228_to_fp16"), val = tensor<fp16, [4096, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(34756672)))];
282
+ tensor<fp16, [?, 4096, 1, 3]> input_3_cast_fp16 = conv(dilations = input_3_dilations_0, groups = input_3_groups_0, pad = input_3_pad_0, pad_type = input_3_pad_type_0, strides = input_3_strides_0, weight = var_228_to_fp16, x = var_359_cast_fp16_0)[name = string("input_3_cast_fp16")];
283
+ tensor<fp16, [?, 4096, 1, 3]> var_367_cast_fp16 = silu(x = input_3_cast_fp16)[name = string("op_367_cast_fp16")];
284
+ string var_372_pad_type_0 = const()[name = string("op_372_pad_type_0"), val = string("valid")];
285
+ tensor<int32, [2]> var_372_strides_0 = const()[name = string("op_372_strides_0"), val = tensor<int32, [2]>([1, 1])];
286
+ tensor<int32, [4]> var_372_pad_0 = const()[name = string("op_372_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
287
+ tensor<int32, [2]> var_372_dilations_0 = const()[name = string("op_372_dilations_0"), val = tensor<int32, [2]>([1, 1])];
288
+ int32 var_372_groups_0 = const()[name = string("op_372_groups_0"), val = int32(1)];
289
+ tensor<fp16, [4096, 1024, 1, 1]> var_229_to_fp16 = const()[name = string("op_229_to_fp16"), val = tensor<fp16, [4096, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(43145344)))];
290
+ tensor<fp16, [?, 4096, 1, 3]> var_372_cast_fp16 = conv(dilations = var_372_dilations_0, groups = var_372_groups_0, pad = var_372_pad_0, pad_type = var_372_pad_type_0, strides = var_372_strides_0, weight = var_229_to_fp16, x = var_359_cast_fp16_0)[name = string("op_372_cast_fp16")];
291
+ tensor<fp16, [?, 4096, 1, 3]> x_39_cast_fp16 = mul(x = var_367_cast_fp16, y = var_372_cast_fp16)[name = string("x_39_cast_fp16")];
292
+ string hidden_states_11_pad_type_0 = const()[name = string("hidden_states_11_pad_type_0"), val = string("valid")];
293
+ tensor<int32, [2]> hidden_states_11_strides_0 = const()[name = string("hidden_states_11_strides_0"), val = tensor<int32, [2]>([1, 1])];
294
+ tensor<int32, [4]> hidden_states_11_pad_0 = const()[name = string("hidden_states_11_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
295
+ tensor<int32, [2]> hidden_states_11_dilations_0 = const()[name = string("hidden_states_11_dilations_0"), val = tensor<int32, [2]>([1, 1])];
296
+ int32 hidden_states_11_groups_0 = const()[name = string("hidden_states_11_groups_0"), val = int32(1)];
297
+ tensor<fp16, [1024, 4096, 1, 1]> var_230_to_fp16 = const()[name = string("op_230_to_fp16"), val = tensor<fp16, [1024, 4096, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(51534016)))];
298
+ tensor<fp16, [?, 1024, 1, 3]> hidden_states_11_cast_fp16 = conv(dilations = hidden_states_11_dilations_0, groups = hidden_states_11_groups_0, pad = hidden_states_11_pad_0, pad_type = hidden_states_11_pad_type_0, strides = hidden_states_11_strides_0, weight = var_230_to_fp16, x = x_39_cast_fp16)[name = string("hidden_states_11_cast_fp16")];
299
+ tensor<fp16, [?, 1024, 1, 3]> x_41_cast_fp16 = add(x = x_31_cast_fp16, y = hidden_states_11_cast_fp16)[name = string("x_41_cast_fp16")];
300
+ int32 var_390 = const()[name = string("op_390"), val = int32(-2)];
301
+ int32 var_394 = const()[name = string("op_394"), val = int32(1)];
302
+ int32 var_399 = const()[name = string("op_399"), val = int32(2)];
303
+ fp16 const_9_promoted_to_fp16 = const()[name = string("const_9_promoted_to_fp16"), val = fp16(-0x1p+0)];
304
+ tensor<fp16, [?, 1024, 1, 3]> var_404_cast_fp16 = mul(x = x_41_cast_fp16, y = const_9_promoted_to_fp16)[name = string("op_404_cast_fp16")];
305
+ bool x_43_interleave_0 = const()[name = string("x_43_interleave_0"), val = bool(false)];
306
+ tensor<fp16, [?, 2048, 1, 3]> x_43_cast_fp16 = concat(axis = var_394, interleave = x_43_interleave_0, values = (x_41_cast_fp16, var_404_cast_fp16))[name = string("x_43_cast_fp16")];
307
+ tensor<int32, [1]> out_25_axes_0 = const()[name = string("out_25_axes_0"), val = tensor<int32, [1]>([1])];
308
+ fp16 var_414_to_fp16 = const()[name = string("op_414_to_fp16"), val = fp16(0x1.5p-17)];
309
+ tensor<fp16, [?, 2048, 1, 3]> out_25_cast_fp16 = layer_norm(axes = out_25_axes_0, epsilon = var_414_to_fp16, x = x_43_cast_fp16)[name = string("out_25_cast_fp16")];
310
+ tensor<fp16, [1, 2048, 1, 1]> layer_encoder_layers_2_input_layernorm_weight_to_fp16 = const()[name = string("layer_encoder_layers_2_input_layernorm_weight_to_fp16"), val = tensor<fp16, [1, 2048, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(59922688)))];
311
+ tensor<fp16, [?, 2048, 1, 3]> out_27_cast_fp16 = mul(x = out_25_cast_fp16, y = layer_encoder_layers_2_input_layernorm_weight_to_fp16)[name = string("out_27_cast_fp16")];
312
+ tensor<int32, [2]> var_420_split_sizes_0 = const()[name = string("op_420_split_sizes_0"), val = tensor<int32, [2]>([1024, 1024])];
313
+ int32 var_420_axis_0 = const()[name = string("op_420_axis_0"), val = int32(1)];
314
+ tensor<fp16, [?, 1024, 1, 3]> var_420_cast_fp16_0, tensor<fp16, [?, 1024, 1, 3]> var_420_cast_fp16_1 = split(axis = var_420_axis_0, split_sizes = var_420_split_sizes_0, x = out_27_cast_fp16)[name = string("op_420_cast_fp16")];
315
+ string query_states_13_pad_type_0 = const()[name = string("query_states_13_pad_type_0"), val = string("valid")];
316
+ tensor<int32, [2]> query_states_13_strides_0 = const()[name = string("query_states_13_strides_0"), val = tensor<int32, [2]>([1, 1])];
317
+ tensor<int32, [4]> query_states_13_pad_0 = const()[name = string("query_states_13_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
318
+ tensor<int32, [2]> query_states_13_dilations_0 = const()[name = string("query_states_13_dilations_0"), val = tensor<int32, [2]>([1, 1])];
319
+ int32 query_states_13_groups_0 = const()[name = string("query_states_13_groups_0"), val = int32(1)];
320
+ tensor<fp16, [1024, 1024, 1, 1]> var_385_to_fp16 = const()[name = string("op_385_to_fp16"), val = tensor<fp16, [1024, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(59926848)))];
321
+ tensor<fp16, [?, 1024, 1, 3]> query_states_13_cast_fp16 = conv(dilations = query_states_13_dilations_0, groups = query_states_13_groups_0, pad = query_states_13_pad_0, pad_type = query_states_13_pad_type_0, strides = query_states_13_strides_0, weight = var_385_to_fp16, x = var_420_cast_fp16_0)[name = string("query_states_13_cast_fp16")];
322
+ string key_states_13_pad_type_0 = const()[name = string("key_states_13_pad_type_0"), val = string("valid")];
323
+ tensor<int32, [2]> key_states_13_strides_0 = const()[name = string("key_states_13_strides_0"), val = tensor<int32, [2]>([1, 1])];
324
+ tensor<int32, [4]> key_states_13_pad_0 = const()[name = string("key_states_13_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
325
+ tensor<int32, [2]> key_states_13_dilations_0 = const()[name = string("key_states_13_dilations_0"), val = tensor<int32, [2]>([1, 1])];
326
+ int32 key_states_13_groups_0 = const()[name = string("key_states_13_groups_0"), val = int32(1)];
327
+ tensor<fp16, [128, 1024, 1, 1]> var_386_to_fp16 = const()[name = string("op_386_to_fp16"), val = tensor<fp16, [128, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(62024064)))];
328
+ tensor<fp16, [?, 128, 1, 3]> key_states_13_cast_fp16 = conv(dilations = key_states_13_dilations_0, groups = key_states_13_groups_0, pad = key_states_13_pad_0, pad_type = key_states_13_pad_type_0, strides = key_states_13_strides_0, weight = var_386_to_fp16, x = var_420_cast_fp16_0)[name = string("key_states_13_cast_fp16")];
329
+ string value_states_13_pad_type_0 = const()[name = string("value_states_13_pad_type_0"), val = string("valid")];
330
+ tensor<int32, [2]> value_states_13_strides_0 = const()[name = string("value_states_13_strides_0"), val = tensor<int32, [2]>([1, 1])];
331
+ tensor<int32, [4]> value_states_13_pad_0 = const()[name = string("value_states_13_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
332
+ tensor<int32, [2]> value_states_13_dilations_0 = const()[name = string("value_states_13_dilations_0"), val = tensor<int32, [2]>([1, 1])];
333
+ int32 value_states_13_groups_0 = const()[name = string("value_states_13_groups_0"), val = int32(1)];
334
+ tensor<fp16, [128, 1024, 1, 1]> var_387_to_fp16 = const()[name = string("op_387_to_fp16"), val = tensor<fp16, [128, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(62286272)))];
335
+ tensor<fp16, [?, 128, 1, 3]> value_states_13_cast_fp16 = conv(dilations = value_states_13_dilations_0, groups = value_states_13_groups_0, pad = value_states_13_pad_0, pad_type = value_states_13_pad_type_0, strides = value_states_13_strides_0, weight = var_387_to_fp16, x = var_420_cast_fp16_0)[name = string("value_states_13_cast_fp16")];
336
+ tensor<int32, [4]> concat_8x = const()[name = string("concat_8x"), val = tensor<int32, [4]>([-1, 16, 64, 3])];
337
+ tensor<fp16, [?, 16, 64, 3]> embed_9_cast_fp16 = reshape(shape = concat_8x, x = query_states_13_cast_fp16)[name = string("embed_9_cast_fp16")];
338
+ tensor<int32, [4]> concat_9x = const()[name = string("concat_9x"), val = tensor<int32, [4]>([-1, 2, 64, 3])];
339
+ tensor<fp16, [?, 2, 64, 3]> embed_11_cast_fp16 = reshape(shape = concat_9x, x = key_states_13_cast_fp16)[name = string("embed_11_cast_fp16")];
340
+ tensor<int32, [4]> concat_10x = const()[name = string("concat_10x"), val = tensor<int32, [4]>([-1, 2, 64, 3])];
341
+ tensor<fp16, [?, 2, 64, 3]> value_states_15_cast_fp16 = reshape(shape = concat_10x, x = value_states_13_cast_fp16)[name = string("value_states_15_cast_fp16")];
342
+ tensor<fp16, [?, 16, 64, 3]> var_446_cast_fp16 = mul(x = embed_9_cast_fp16, y = cos_to_fp16)[name = string("op_446_cast_fp16")];
343
+ tensor<int32, [2]> var_447_split_sizes_0 = const()[name = string("op_447_split_sizes_0"), val = tensor<int32, [2]>([32, 32])];
344
+ int32 var_447_axis_0 = const()[name = string("op_447_axis_0"), val = int32(-2)];
345
+ tensor<fp16, [?, 16, 32, 3]> var_447_cast_fp16_0, tensor<fp16, [?, 16, 32, 3]> var_447_cast_fp16_1 = split(axis = var_447_axis_0, split_sizes = var_447_split_sizes_0, x = embed_9_cast_fp16)[name = string("op_447_cast_fp16")];
346
+ fp16 const_10_promoted_to_fp16 = const()[name = string("const_10_promoted_to_fp16"), val = fp16(-0x1p+0)];
347
+ tensor<fp16, [?, 16, 32, 3]> var_449_cast_fp16 = mul(x = var_447_cast_fp16_1, y = const_10_promoted_to_fp16)[name = string("op_449_cast_fp16")];
348
+ bool var_451_interleave_0 = const()[name = string("op_451_interleave_0"), val = bool(false)];
349
+ tensor<fp16, [?, 16, 64, 3]> var_451_cast_fp16 = concat(axis = var_390, interleave = var_451_interleave_0, values = (var_449_cast_fp16, var_447_cast_fp16_0))[name = string("op_451_cast_fp16")];
350
+ tensor<fp16, [?, 16, 64, 3]> var_452_cast_fp16 = mul(x = var_451_cast_fp16, y = sin_to_fp16)[name = string("op_452_cast_fp16")];
351
+ tensor<fp16, [?, 16, 64, 3]> query_states_15_cast_fp16 = add(x = var_446_cast_fp16, y = var_452_cast_fp16)[name = string("query_states_15_cast_fp16")];
352
+ tensor<fp16, [?, 2, 64, 3]> var_454_cast_fp16 = mul(x = embed_11_cast_fp16, y = cos_to_fp16)[name = string("op_454_cast_fp16")];
353
+ tensor<int32, [2]> var_455_split_sizes_0 = const()[name = string("op_455_split_sizes_0"), val = tensor<int32, [2]>([32, 32])];
354
+ int32 var_455_axis_0 = const()[name = string("op_455_axis_0"), val = int32(-2)];
355
+ tensor<fp16, [?, 2, 32, 3]> var_455_cast_fp16_0, tensor<fp16, [?, 2, 32, 3]> var_455_cast_fp16_1 = split(axis = var_455_axis_0, split_sizes = var_455_split_sizes_0, x = embed_11_cast_fp16)[name = string("op_455_cast_fp16")];
356
+ fp16 const_11_promoted_to_fp16 = const()[name = string("const_11_promoted_to_fp16"), val = fp16(-0x1p+0)];
357
+ tensor<fp16, [?, 2, 32, 3]> var_457_cast_fp16 = mul(x = var_455_cast_fp16_1, y = const_11_promoted_to_fp16)[name = string("op_457_cast_fp16")];
358
+ bool var_459_interleave_0 = const()[name = string("op_459_interleave_0"), val = bool(false)];
359
+ tensor<fp16, [?, 2, 64, 3]> var_459_cast_fp16 = concat(axis = var_390, interleave = var_459_interleave_0, values = (var_457_cast_fp16, var_455_cast_fp16_0))[name = string("op_459_cast_fp16")];
360
+ tensor<fp16, [?, 2, 64, 3]> var_460_cast_fp16 = mul(x = var_459_cast_fp16, y = sin_to_fp16)[name = string("op_460_cast_fp16")];
361
+ tensor<fp16, [?, 2, 64, 3]> key_states_15_cast_fp16 = add(x = var_454_cast_fp16, y = var_460_cast_fp16)[name = string("key_states_15_cast_fp16")];
362
+ tensor<int32, [2]> var_465_split_sizes_0 = const()[name = string("op_465_split_sizes_0"), val = tensor<int32, [2]>([8, 8])];
363
+ int32 var_465_axis_0 = const()[name = string("op_465_axis_0"), val = int32(1)];
364
+ tensor<fp16, [?, 8, 64, 3]> var_465_cast_fp16_0, tensor<fp16, [?, 8, 64, 3]> var_465_cast_fp16_1 = split(axis = var_465_axis_0, split_sizes = var_465_split_sizes_0, x = query_states_15_cast_fp16)[name = string("op_465_cast_fp16")];
365
+ tensor<int32, [2]> var_467_split_sizes_0 = const()[name = string("op_467_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
366
+ int32 var_467_axis_0 = const()[name = string("op_467_axis_0"), val = int32(1)];
367
+ tensor<fp16, [?, 1, 64, 3]> var_467_cast_fp16_0, tensor<fp16, [?, 1, 64, 3]> var_467_cast_fp16_1 = split(axis = var_467_axis_0, split_sizes = var_467_split_sizes_0, x = key_states_15_cast_fp16)[name = string("op_467_cast_fp16")];
368
+ tensor<int32, [2]> var_469_split_sizes_0 = const()[name = string("op_469_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
369
+ int32 var_469_axis_0 = const()[name = string("op_469_axis_0"), val = int32(1)];
370
+ tensor<fp16, [?, 1, 64, 3]> var_469_cast_fp16_0, tensor<fp16, [?, 1, 64, 3]> var_469_cast_fp16_1 = split(axis = var_469_axis_0, split_sizes = var_469_split_sizes_0, x = value_states_15_cast_fp16)[name = string("op_469_cast_fp16")];
371
+ bool attn_weights_25_transpose_x_1 = const()[name = string("attn_weights_25_transpose_x_1"), val = bool(true)];
372
+ bool attn_weights_25_transpose_y_1 = const()[name = string("attn_weights_25_transpose_y_1"), val = bool(false)];
373
+ tensor<fp16, [?, 8, 3, 3]> attn_weights_25_cast_fp16 = matmul(transpose_x = attn_weights_25_transpose_x_1, transpose_y = attn_weights_25_transpose_y_1, x = var_467_cast_fp16_0, y = var_465_cast_fp16_0)[name = string("attn_weights_25_cast_fp16")];
374
+ fp16 _inversed_attn_weights_27_y_0_to_fp16 = const()[name = string("_inversed_attn_weights_27_y_0_to_fp16"), val = fp16(0x1p-3)];
375
+ tensor<fp16, [?, 8, 3, 3]> _inversed_attn_weights_27_cast_fp16 = mul(x = attn_weights_25_cast_fp16, y = _inversed_attn_weights_27_y_0_to_fp16)[name = string("_inversed_attn_weights_27_cast_fp16")];
376
+ tensor<fp16, [?, 8, 3, 3]> attn_weights_29_cast_fp16 = softmax(axis = var_399, x = _inversed_attn_weights_27_cast_fp16)[name = string("attn_weights_29_cast_fp16")];
377
+ bool var_476_transpose_x_0 = const()[name = string("op_476_transpose_x_0"), val = bool(false)];
378
+ bool var_476_transpose_y_0 = const()[name = string("op_476_transpose_y_0"), val = bool(false)];
379
+ tensor<fp16, [?, 8, 64, 3]> var_476_cast_fp16 = matmul(transpose_x = var_476_transpose_x_0, transpose_y = var_476_transpose_y_0, x = var_469_cast_fp16_0, y = attn_weights_29_cast_fp16)[name = string("op_476_cast_fp16")];
380
+ bool attn_weights_31_transpose_x_1 = const()[name = string("attn_weights_31_transpose_x_1"), val = bool(true)];
381
+ bool attn_weights_31_transpose_y_1 = const()[name = string("attn_weights_31_transpose_y_1"), val = bool(false)];
382
+ tensor<fp16, [?, 8, 3, 3]> attn_weights_31_cast_fp16 = matmul(transpose_x = attn_weights_31_transpose_x_1, transpose_y = attn_weights_31_transpose_y_1, x = var_467_cast_fp16_1, y = var_465_cast_fp16_1)[name = string("attn_weights_31_cast_fp16")];
383
+ fp16 _inversed_attn_weights_33_y_0_to_fp16 = const()[name = string("_inversed_attn_weights_33_y_0_to_fp16"), val = fp16(0x1p-3)];
384
+ tensor<fp16, [?, 8, 3, 3]> _inversed_attn_weights_33_cast_fp16 = mul(x = attn_weights_31_cast_fp16, y = _inversed_attn_weights_33_y_0_to_fp16)[name = string("_inversed_attn_weights_33_cast_fp16")];
385
+ tensor<fp16, [?, 8, 3, 3]> attn_weights_35_cast_fp16 = softmax(axis = var_399, x = _inversed_attn_weights_33_cast_fp16)[name = string("attn_weights_35_cast_fp16")];
386
+ bool attn_output_9_transpose_x_0 = const()[name = string("attn_output_9_transpose_x_0"), val = bool(false)];
387
+ bool attn_output_9_transpose_y_0 = const()[name = string("attn_output_9_transpose_y_0"), val = bool(false)];
388
+ tensor<fp16, [?, 8, 64, 3]> attn_output_9_cast_fp16 = matmul(transpose_x = attn_output_9_transpose_x_0, transpose_y = attn_output_9_transpose_y_0, x = var_469_cast_fp16_1, y = attn_weights_35_cast_fp16)[name = string("attn_output_9_cast_fp16")];
389
+ bool attn_output_11_interleave_0 = const()[name = string("attn_output_11_interleave_0"), val = bool(false)];
390
+ tensor<fp16, [?, 16, 64, 3]> attn_output_11_cast_fp16 = concat(axis = var_394, interleave = attn_output_11_interleave_0, values = (var_476_cast_fp16, attn_output_9_cast_fp16))[name = string("attn_output_11_cast_fp16")];
391
+ tensor<int32, [4]> concat_11x = const()[name = string("concat_11x"), val = tensor<int32, [4]>([-1, 1024, 1, 3])];
392
+ tensor<fp16, [?, 1024, 1, 3]> x_47_cast_fp16 = reshape(shape = concat_11x, x = attn_output_11_cast_fp16)[name = string("x_47_cast_fp16")];
393
+ string hidden_states_15_pad_type_0 = const()[name = string("hidden_states_15_pad_type_0"), val = string("valid")];
394
+ tensor<int32, [2]> hidden_states_15_strides_0 = const()[name = string("hidden_states_15_strides_0"), val = tensor<int32, [2]>([1, 1])];
395
+ tensor<int32, [4]> hidden_states_15_pad_0 = const()[name = string("hidden_states_15_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
396
+ tensor<int32, [2]> hidden_states_15_dilations_0 = const()[name = string("hidden_states_15_dilations_0"), val = tensor<int32, [2]>([1, 1])];
397
+ int32 hidden_states_15_groups_0 = const()[name = string("hidden_states_15_groups_0"), val = int32(1)];
398
+ tensor<fp16, [1024, 1024, 1, 1]> var_393_to_fp16 = const()[name = string("op_393_to_fp16"), val = tensor<fp16, [1024, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(62548480)))];
399
+ tensor<fp16, [?, 1024, 1, 3]> hidden_states_15_cast_fp16 = conv(dilations = hidden_states_15_dilations_0, groups = hidden_states_15_groups_0, pad = hidden_states_15_pad_0, pad_type = hidden_states_15_pad_type_0, strides = hidden_states_15_strides_0, weight = var_393_to_fp16, x = x_47_cast_fp16)[name = string("hidden_states_15_cast_fp16")];
400
+ tensor<fp16, [?, 1024, 1, 3]> x_49_cast_fp16 = add(x = x_41_cast_fp16, y = hidden_states_15_cast_fp16)[name = string("x_49_cast_fp16")];
401
+ fp16 const_12_promoted_to_fp16 = const()[name = string("const_12_promoted_to_fp16"), val = fp16(-0x1p+0)];
402
+ tensor<fp16, [?, 1024, 1, 3]> var_495_cast_fp16 = mul(x = x_49_cast_fp16, y = const_12_promoted_to_fp16)[name = string("op_495_cast_fp16")];
403
+ bool x_51_interleave_0 = const()[name = string("x_51_interleave_0"), val = bool(false)];
404
+ tensor<fp16, [?, 2048, 1, 3]> x_51_cast_fp16 = concat(axis = var_394, interleave = x_51_interleave_0, values = (x_49_cast_fp16, var_495_cast_fp16))[name = string("x_51_cast_fp16")];
405
+ tensor<int32, [1]> out_31_axes_0 = const()[name = string("out_31_axes_0"), val = tensor<int32, [1]>([1])];
406
+ fp16 var_505_to_fp16 = const()[name = string("op_505_to_fp16"), val = fp16(0x1.5p-17)];
407
+ tensor<fp16, [?, 2048, 1, 3]> out_31_cast_fp16 = layer_norm(axes = out_31_axes_0, epsilon = var_505_to_fp16, x = x_51_cast_fp16)[name = string("out_31_cast_fp16")];
408
+ tensor<fp16, [1, 2048, 1, 1]> layer_encoder_layers_2_post_attention_layernorm_weight_to_fp16 = const()[name = string("layer_encoder_layers_2_post_attention_layernorm_weight_to_fp16"), val = tensor<fp16, [1, 2048, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64645696)))];
409
+ tensor<fp16, [?, 2048, 1, 3]> out_33_cast_fp16 = mul(x = out_31_cast_fp16, y = layer_encoder_layers_2_post_attention_layernorm_weight_to_fp16)[name = string("out_33_cast_fp16")];
410
+ tensor<int32, [2]> var_511_split_sizes_0 = const()[name = string("op_511_split_sizes_0"), val = tensor<int32, [2]>([1024, 1024])];
411
+ int32 var_511_axis_0 = const()[name = string("op_511_axis_0"), val = int32(1)];
412
+ tensor<fp16, [?, 1024, 1, 3]> var_511_cast_fp16_0, tensor<fp16, [?, 1024, 1, 3]> var_511_cast_fp16_1 = split(axis = var_511_axis_0, split_sizes = var_511_split_sizes_0, x = out_33_cast_fp16)[name = string("op_511_cast_fp16")];
413
+ string input_5_pad_type_0 = const()[name = string("input_5_pad_type_0"), val = string("valid")];
414
+ tensor<int32, [2]> input_5_strides_0 = const()[name = string("input_5_strides_0"), val = tensor<int32, [2]>([1, 1])];
415
+ tensor<int32, [4]> input_5_pad_0 = const()[name = string("input_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
416
+ tensor<int32, [2]> input_5_dilations_0 = const()[name = string("input_5_dilations_0"), val = tensor<int32, [2]>([1, 1])];
417
+ int32 input_5_groups_0 = const()[name = string("input_5_groups_0"), val = int32(1)];
418
+ tensor<fp16, [4096, 1024, 1, 1]> var_380_to_fp16 = const()[name = string("op_380_to_fp16"), val = tensor<fp16, [4096, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64649856)))];
419
+ tensor<fp16, [?, 4096, 1, 3]> input_5_cast_fp16 = conv(dilations = input_5_dilations_0, groups = input_5_groups_0, pad = input_5_pad_0, pad_type = input_5_pad_type_0, strides = input_5_strides_0, weight = var_380_to_fp16, x = var_511_cast_fp16_0)[name = string("input_5_cast_fp16")];
420
+ tensor<fp16, [?, 4096, 1, 3]> var_519_cast_fp16 = silu(x = input_5_cast_fp16)[name = string("op_519_cast_fp16")];
421
+ string var_524_pad_type_0 = const()[name = string("op_524_pad_type_0"), val = string("valid")];
422
+ tensor<int32, [2]> var_524_strides_0 = const()[name = string("op_524_strides_0"), val = tensor<int32, [2]>([1, 1])];
423
+ tensor<int32, [4]> var_524_pad_0 = const()[name = string("op_524_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
424
+ tensor<int32, [2]> var_524_dilations_0 = const()[name = string("op_524_dilations_0"), val = tensor<int32, [2]>([1, 1])];
425
+ int32 var_524_groups_0 = const()[name = string("op_524_groups_0"), val = int32(1)];
426
+ tensor<fp16, [4096, 1024, 1, 1]> var_381_to_fp16 = const()[name = string("op_381_to_fp16"), val = tensor<fp16, [4096, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(73038528)))];
427
+ tensor<fp16, [?, 4096, 1, 3]> var_524_cast_fp16 = conv(dilations = var_524_dilations_0, groups = var_524_groups_0, pad = var_524_pad_0, pad_type = var_524_pad_type_0, strides = var_524_strides_0, weight = var_381_to_fp16, x = var_511_cast_fp16_0)[name = string("op_524_cast_fp16")];
428
+ tensor<fp16, [?, 4096, 1, 3]> x_57_cast_fp16 = mul(x = var_519_cast_fp16, y = var_524_cast_fp16)[name = string("x_57_cast_fp16")];
429
+ string hidden_states_17_pad_type_0 = const()[name = string("hidden_states_17_pad_type_0"), val = string("valid")];
430
+ tensor<int32, [2]> hidden_states_17_strides_0 = const()[name = string("hidden_states_17_strides_0"), val = tensor<int32, [2]>([1, 1])];
431
+ tensor<int32, [4]> hidden_states_17_pad_0 = const()[name = string("hidden_states_17_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
432
+ tensor<int32, [2]> hidden_states_17_dilations_0 = const()[name = string("hidden_states_17_dilations_0"), val = tensor<int32, [2]>([1, 1])];
433
+ int32 hidden_states_17_groups_0 = const()[name = string("hidden_states_17_groups_0"), val = int32(1)];
434
+ tensor<fp16, [1024, 4096, 1, 1]> var_382_to_fp16 = const()[name = string("op_382_to_fp16"), val = tensor<fp16, [1024, 4096, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(81427200)))];
435
+ tensor<fp16, [?, 1024, 1, 3]> hidden_states_17_cast_fp16 = conv(dilations = hidden_states_17_dilations_0, groups = hidden_states_17_groups_0, pad = hidden_states_17_pad_0, pad_type = hidden_states_17_pad_type_0, strides = hidden_states_17_strides_0, weight = var_382_to_fp16, x = x_57_cast_fp16)[name = string("hidden_states_17_cast_fp16")];
436
+ tensor<fp16, [?, 1024, 1, 3]> x_59_cast_fp16 = add(x = x_49_cast_fp16, y = hidden_states_17_cast_fp16)[name = string("x_59_cast_fp16")];
437
+ int32 var_542 = const()[name = string("op_542"), val = int32(-2)];
438
+ int32 var_546 = const()[name = string("op_546"), val = int32(1)];
439
+ int32 var_551 = const()[name = string("op_551"), val = int32(2)];
440
+ fp16 const_13_promoted_to_fp16 = const()[name = string("const_13_promoted_to_fp16"), val = fp16(-0x1p+0)];
441
+ tensor<fp16, [?, 1024, 1, 3]> var_556_cast_fp16 = mul(x = x_59_cast_fp16, y = const_13_promoted_to_fp16)[name = string("op_556_cast_fp16")];
442
+ bool x_61_interleave_0 = const()[name = string("x_61_interleave_0"), val = bool(false)];
443
+ tensor<fp16, [?, 2048, 1, 3]> x_61_cast_fp16 = concat(axis = var_546, interleave = x_61_interleave_0, values = (x_59_cast_fp16, var_556_cast_fp16))[name = string("x_61_cast_fp16")];
444
+ tensor<int32, [1]> out_37_axes_0 = const()[name = string("out_37_axes_0"), val = tensor<int32, [1]>([1])];
445
+ fp16 var_566_to_fp16 = const()[name = string("op_566_to_fp16"), val = fp16(0x1.5p-17)];
446
+ tensor<fp16, [?, 2048, 1, 3]> out_37_cast_fp16 = layer_norm(axes = out_37_axes_0, epsilon = var_566_to_fp16, x = x_61_cast_fp16)[name = string("out_37_cast_fp16")];
447
+ tensor<fp16, [1, 2048, 1, 1]> layer_encoder_layers_3_input_layernorm_weight_to_fp16 = const()[name = string("layer_encoder_layers_3_input_layernorm_weight_to_fp16"), val = tensor<fp16, [1, 2048, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(89815872)))];
448
+ tensor<fp16, [?, 2048, 1, 3]> out_39_cast_fp16 = mul(x = out_37_cast_fp16, y = layer_encoder_layers_3_input_layernorm_weight_to_fp16)[name = string("out_39_cast_fp16")];
449
+ tensor<int32, [2]> var_572_split_sizes_0 = const()[name = string("op_572_split_sizes_0"), val = tensor<int32, [2]>([1024, 1024])];
450
+ int32 var_572_axis_0 = const()[name = string("op_572_axis_0"), val = int32(1)];
451
+ tensor<fp16, [?, 1024, 1, 3]> var_572_cast_fp16_0, tensor<fp16, [?, 1024, 1, 3]> var_572_cast_fp16_1 = split(axis = var_572_axis_0, split_sizes = var_572_split_sizes_0, x = out_39_cast_fp16)[name = string("op_572_cast_fp16")];
452
+ string query_states_19_pad_type_0 = const()[name = string("query_states_19_pad_type_0"), val = string("valid")];
453
+ tensor<int32, [2]> query_states_19_strides_0 = const()[name = string("query_states_19_strides_0"), val = tensor<int32, [2]>([1, 1])];
454
+ tensor<int32, [4]> query_states_19_pad_0 = const()[name = string("query_states_19_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
455
+ tensor<int32, [2]> query_states_19_dilations_0 = const()[name = string("query_states_19_dilations_0"), val = tensor<int32, [2]>([1, 1])];
456
+ int32 query_states_19_groups_0 = const()[name = string("query_states_19_groups_0"), val = int32(1)];
457
+ tensor<fp16, [1024, 1024, 1, 1]> var_537_to_fp16 = const()[name = string("op_537_to_fp16"), val = tensor<fp16, [1024, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(89820032)))];
458
+ tensor<fp16, [?, 1024, 1, 3]> query_states_19_cast_fp16 = conv(dilations = query_states_19_dilations_0, groups = query_states_19_groups_0, pad = query_states_19_pad_0, pad_type = query_states_19_pad_type_0, strides = query_states_19_strides_0, weight = var_537_to_fp16, x = var_572_cast_fp16_0)[name = string("query_states_19_cast_fp16")];
459
+ string key_states_19_pad_type_0 = const()[name = string("key_states_19_pad_type_0"), val = string("valid")];
460
+ tensor<int32, [2]> key_states_19_strides_0 = const()[name = string("key_states_19_strides_0"), val = tensor<int32, [2]>([1, 1])];
461
+ tensor<int32, [4]> key_states_19_pad_0 = const()[name = string("key_states_19_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
462
+ tensor<int32, [2]> key_states_19_dilations_0 = const()[name = string("key_states_19_dilations_0"), val = tensor<int32, [2]>([1, 1])];
463
+ int32 key_states_19_groups_0 = const()[name = string("key_states_19_groups_0"), val = int32(1)];
464
+ tensor<fp16, [128, 1024, 1, 1]> var_538_to_fp16 = const()[name = string("op_538_to_fp16"), val = tensor<fp16, [128, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(91917248)))];
465
+ tensor<fp16, [?, 128, 1, 3]> key_states_19_cast_fp16 = conv(dilations = key_states_19_dilations_0, groups = key_states_19_groups_0, pad = key_states_19_pad_0, pad_type = key_states_19_pad_type_0, strides = key_states_19_strides_0, weight = var_538_to_fp16, x = var_572_cast_fp16_0)[name = string("key_states_19_cast_fp16")];
466
+ string value_states_19_pad_type_0 = const()[name = string("value_states_19_pad_type_0"), val = string("valid")];
467
+ tensor<int32, [2]> value_states_19_strides_0 = const()[name = string("value_states_19_strides_0"), val = tensor<int32, [2]>([1, 1])];
468
+ tensor<int32, [4]> value_states_19_pad_0 = const()[name = string("value_states_19_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
469
+ tensor<int32, [2]> value_states_19_dilations_0 = const()[name = string("value_states_19_dilations_0"), val = tensor<int32, [2]>([1, 1])];
470
+ int32 value_states_19_groups_0 = const()[name = string("value_states_19_groups_0"), val = int32(1)];
471
+ tensor<fp16, [128, 1024, 1, 1]> var_539_to_fp16 = const()[name = string("op_539_to_fp16"), val = tensor<fp16, [128, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92179456)))];
472
+ tensor<fp16, [?, 128, 1, 3]> value_states_19_cast_fp16 = conv(dilations = value_states_19_dilations_0, groups = value_states_19_groups_0, pad = value_states_19_pad_0, pad_type = value_states_19_pad_type_0, strides = value_states_19_strides_0, weight = var_539_to_fp16, x = var_572_cast_fp16_0)[name = string("value_states_19_cast_fp16")];
473
+ tensor<int32, [4]> concat_12x = const()[name = string("concat_12x"), val = tensor<int32, [4]>([-1, 16, 64, 3])];
474
+ tensor<fp16, [?, 16, 64, 3]> embed_13_cast_fp16 = reshape(shape = concat_12x, x = query_states_19_cast_fp16)[name = string("embed_13_cast_fp16")];
475
+ tensor<int32, [4]> concat_13x = const()[name = string("concat_13x"), val = tensor<int32, [4]>([-1, 2, 64, 3])];
476
+ tensor<fp16, [?, 2, 64, 3]> embed_cast_fp16 = reshape(shape = concat_13x, x = key_states_19_cast_fp16)[name = string("embed_cast_fp16")];
477
+ tensor<int32, [4]> concat_14x = const()[name = string("concat_14x"), val = tensor<int32, [4]>([-1, 2, 64, 3])];
478
+ tensor<fp16, [?, 2, 64, 3]> value_states_21_cast_fp16 = reshape(shape = concat_14x, x = value_states_19_cast_fp16)[name = string("value_states_21_cast_fp16")];
479
+ tensor<fp16, [?, 16, 64, 3]> var_598_cast_fp16 = mul(x = embed_13_cast_fp16, y = cos_to_fp16)[name = string("op_598_cast_fp16")];
480
+ tensor<int32, [2]> var_599_split_sizes_0 = const()[name = string("op_599_split_sizes_0"), val = tensor<int32, [2]>([32, 32])];
481
+ int32 var_599_axis_0 = const()[name = string("op_599_axis_0"), val = int32(-2)];
482
+ tensor<fp16, [?, 16, 32, 3]> var_599_cast_fp16_0, tensor<fp16, [?, 16, 32, 3]> var_599_cast_fp16_1 = split(axis = var_599_axis_0, split_sizes = var_599_split_sizes_0, x = embed_13_cast_fp16)[name = string("op_599_cast_fp16")];
483
+ fp16 const_14_promoted_to_fp16 = const()[name = string("const_14_promoted_to_fp16"), val = fp16(-0x1p+0)];
484
+ tensor<fp16, [?, 16, 32, 3]> var_601_cast_fp16 = mul(x = var_599_cast_fp16_1, y = const_14_promoted_to_fp16)[name = string("op_601_cast_fp16")];
485
+ bool var_603_interleave_0 = const()[name = string("op_603_interleave_0"), val = bool(false)];
486
+ tensor<fp16, [?, 16, 64, 3]> var_603_cast_fp16 = concat(axis = var_542, interleave = var_603_interleave_0, values = (var_601_cast_fp16, var_599_cast_fp16_0))[name = string("op_603_cast_fp16")];
487
+ tensor<fp16, [?, 16, 64, 3]> var_604_cast_fp16 = mul(x = var_603_cast_fp16, y = sin_to_fp16)[name = string("op_604_cast_fp16")];
488
+ tensor<fp16, [?, 16, 64, 3]> query_states_21_cast_fp16 = add(x = var_598_cast_fp16, y = var_604_cast_fp16)[name = string("query_states_21_cast_fp16")];
489
+ tensor<fp16, [?, 2, 64, 3]> var_606_cast_fp16 = mul(x = embed_cast_fp16, y = cos_to_fp16)[name = string("op_606_cast_fp16")];
490
+ tensor<int32, [2]> var_607_split_sizes_0 = const()[name = string("op_607_split_sizes_0"), val = tensor<int32, [2]>([32, 32])];
491
+ int32 var_607_axis_0 = const()[name = string("op_607_axis_0"), val = int32(-2)];
492
+ tensor<fp16, [?, 2, 32, 3]> var_607_cast_fp16_0, tensor<fp16, [?, 2, 32, 3]> var_607_cast_fp16_1 = split(axis = var_607_axis_0, split_sizes = var_607_split_sizes_0, x = embed_cast_fp16)[name = string("op_607_cast_fp16")];
493
+ fp16 const_15_promoted_to_fp16 = const()[name = string("const_15_promoted_to_fp16"), val = fp16(-0x1p+0)];
494
+ tensor<fp16, [?, 2, 32, 3]> var_609_cast_fp16 = mul(x = var_607_cast_fp16_1, y = const_15_promoted_to_fp16)[name = string("op_609_cast_fp16")];
495
+ bool var_611_interleave_0 = const()[name = string("op_611_interleave_0"), val = bool(false)];
496
+ tensor<fp16, [?, 2, 64, 3]> var_611_cast_fp16 = concat(axis = var_542, interleave = var_611_interleave_0, values = (var_609_cast_fp16, var_607_cast_fp16_0))[name = string("op_611_cast_fp16")];
497
+ tensor<fp16, [?, 2, 64, 3]> var_612_cast_fp16 = mul(x = var_611_cast_fp16, y = sin_to_fp16)[name = string("op_612_cast_fp16")];
498
+ tensor<fp16, [?, 2, 64, 3]> key_states_21_cast_fp16 = add(x = var_606_cast_fp16, y = var_612_cast_fp16)[name = string("key_states_21_cast_fp16")];
499
+ tensor<int32, [2]> var_617_split_sizes_0 = const()[name = string("op_617_split_sizes_0"), val = tensor<int32, [2]>([8, 8])];
500
+ int32 var_617_axis_0 = const()[name = string("op_617_axis_0"), val = int32(1)];
501
+ tensor<fp16, [?, 8, 64, 3]> var_617_cast_fp16_0, tensor<fp16, [?, 8, 64, 3]> var_617_cast_fp16_1 = split(axis = var_617_axis_0, split_sizes = var_617_split_sizes_0, x = query_states_21_cast_fp16)[name = string("op_617_cast_fp16")];
502
+ tensor<int32, [2]> var_619_split_sizes_0 = const()[name = string("op_619_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
503
+ int32 var_619_axis_0 = const()[name = string("op_619_axis_0"), val = int32(1)];
504
+ tensor<fp16, [?, 1, 64, 3]> var_619_cast_fp16_0, tensor<fp16, [?, 1, 64, 3]> var_619_cast_fp16_1 = split(axis = var_619_axis_0, split_sizes = var_619_split_sizes_0, x = key_states_21_cast_fp16)[name = string("op_619_cast_fp16")];
505
+ tensor<int32, [2]> var_621_split_sizes_0 = const()[name = string("op_621_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
506
+ int32 var_621_axis_0 = const()[name = string("op_621_axis_0"), val = int32(1)];
507
+ tensor<fp16, [?, 1, 64, 3]> var_621_cast_fp16_0, tensor<fp16, [?, 1, 64, 3]> var_621_cast_fp16_1 = split(axis = var_621_axis_0, split_sizes = var_621_split_sizes_0, x = value_states_21_cast_fp16)[name = string("op_621_cast_fp16")];
508
+ bool attn_weights_37_transpose_x_1 = const()[name = string("attn_weights_37_transpose_x_1"), val = bool(true)];
509
+ bool attn_weights_37_transpose_y_1 = const()[name = string("attn_weights_37_transpose_y_1"), val = bool(false)];
510
+ tensor<fp16, [?, 8, 3, 3]> attn_weights_37_cast_fp16 = matmul(transpose_x = attn_weights_37_transpose_x_1, transpose_y = attn_weights_37_transpose_y_1, x = var_619_cast_fp16_0, y = var_617_cast_fp16_0)[name = string("attn_weights_37_cast_fp16")];
511
+ fp16 _inversed_attn_weights_39_y_0_to_fp16 = const()[name = string("_inversed_attn_weights_39_y_0_to_fp16"), val = fp16(0x1p-3)];
512
+ tensor<fp16, [?, 8, 3, 3]> _inversed_attn_weights_39_cast_fp16 = mul(x = attn_weights_37_cast_fp16, y = _inversed_attn_weights_39_y_0_to_fp16)[name = string("_inversed_attn_weights_39_cast_fp16")];
513
+ tensor<fp16, [?, 8, 3, 3]> attn_weights_41_cast_fp16 = softmax(axis = var_551, x = _inversed_attn_weights_39_cast_fp16)[name = string("attn_weights_41_cast_fp16")];
514
+ bool var_628_transpose_x_0 = const()[name = string("op_628_transpose_x_0"), val = bool(false)];
515
+ bool var_628_transpose_y_0 = const()[name = string("op_628_transpose_y_0"), val = bool(false)];
516
+ tensor<fp16, [?, 8, 64, 3]> var_628_cast_fp16 = matmul(transpose_x = var_628_transpose_x_0, transpose_y = var_628_transpose_y_0, x = var_621_cast_fp16_0, y = attn_weights_41_cast_fp16)[name = string("op_628_cast_fp16")];
517
+ bool attn_weights_43_transpose_x_1 = const()[name = string("attn_weights_43_transpose_x_1"), val = bool(true)];
518
+ bool attn_weights_43_transpose_y_1 = const()[name = string("attn_weights_43_transpose_y_1"), val = bool(false)];
519
+ tensor<fp16, [?, 8, 3, 3]> attn_weights_43_cast_fp16 = matmul(transpose_x = attn_weights_43_transpose_x_1, transpose_y = attn_weights_43_transpose_y_1, x = var_619_cast_fp16_1, y = var_617_cast_fp16_1)[name = string("attn_weights_43_cast_fp16")];
520
+ fp16 _inversed_attn_weights_45_y_0_to_fp16 = const()[name = string("_inversed_attn_weights_45_y_0_to_fp16"), val = fp16(0x1p-3)];
521
+ tensor<fp16, [?, 8, 3, 3]> _inversed_attn_weights_45_cast_fp16 = mul(x = attn_weights_43_cast_fp16, y = _inversed_attn_weights_45_y_0_to_fp16)[name = string("_inversed_attn_weights_45_cast_fp16")];
522
+ tensor<fp16, [?, 8, 3, 3]> attn_weights_cast_fp16 = softmax(axis = var_551, x = _inversed_attn_weights_45_cast_fp16)[name = string("attn_weights_cast_fp16")];
523
+ bool attn_output_13_transpose_x_0 = const()[name = string("attn_output_13_transpose_x_0"), val = bool(false)];
524
+ bool attn_output_13_transpose_y_0 = const()[name = string("attn_output_13_transpose_y_0"), val = bool(false)];
525
+ tensor<fp16, [?, 8, 64, 3]> attn_output_13_cast_fp16 = matmul(transpose_x = attn_output_13_transpose_x_0, transpose_y = attn_output_13_transpose_y_0, x = var_621_cast_fp16_1, y = attn_weights_cast_fp16)[name = string("attn_output_13_cast_fp16")];
526
+ bool attn_output_interleave_0 = const()[name = string("attn_output_interleave_0"), val = bool(false)];
527
+ tensor<fp16, [?, 16, 64, 3]> attn_output_cast_fp16 = concat(axis = var_546, interleave = attn_output_interleave_0, values = (var_628_cast_fp16, attn_output_13_cast_fp16))[name = string("attn_output_cast_fp16")];
528
+ tensor<int32, [4]> concat_15x = const()[name = string("concat_15x"), val = tensor<int32, [4]>([-1, 1024, 1, 3])];
529
+ tensor<fp16, [?, 1024, 1, 3]> x_65_cast_fp16 = reshape(shape = concat_15x, x = attn_output_cast_fp16)[name = string("x_65_cast_fp16")];
530
+ string hidden_states_21_pad_type_0 = const()[name = string("hidden_states_21_pad_type_0"), val = string("valid")];
531
+ tensor<int32, [2]> hidden_states_21_strides_0 = const()[name = string("hidden_states_21_strides_0"), val = tensor<int32, [2]>([1, 1])];
532
+ tensor<int32, [4]> hidden_states_21_pad_0 = const()[name = string("hidden_states_21_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
533
+ tensor<int32, [2]> hidden_states_21_dilations_0 = const()[name = string("hidden_states_21_dilations_0"), val = tensor<int32, [2]>([1, 1])];
534
+ int32 hidden_states_21_groups_0 = const()[name = string("hidden_states_21_groups_0"), val = int32(1)];
535
+ tensor<fp16, [1024, 1024, 1, 1]> var_545_to_fp16 = const()[name = string("op_545_to_fp16"), val = tensor<fp16, [1024, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(92441664)))];
536
+ tensor<fp16, [?, 1024, 1, 3]> hidden_states_21_cast_fp16 = conv(dilations = hidden_states_21_dilations_0, groups = hidden_states_21_groups_0, pad = hidden_states_21_pad_0, pad_type = hidden_states_21_pad_type_0, strides = hidden_states_21_strides_0, weight = var_545_to_fp16, x = x_65_cast_fp16)[name = string("hidden_states_21_cast_fp16")];
537
+ tensor<fp16, [?, 1024, 1, 3]> x_67_cast_fp16 = add(x = x_59_cast_fp16, y = hidden_states_21_cast_fp16)[name = string("x_67_cast_fp16")];
538
+ fp16 const_16_promoted_to_fp16 = const()[name = string("const_16_promoted_to_fp16"), val = fp16(-0x1p+0)];
539
+ tensor<fp16, [?, 1024, 1, 3]> var_647_cast_fp16 = mul(x = x_67_cast_fp16, y = const_16_promoted_to_fp16)[name = string("op_647_cast_fp16")];
540
+ bool x_69_interleave_0 = const()[name = string("x_69_interleave_0"), val = bool(false)];
541
+ tensor<fp16, [?, 2048, 1, 3]> x_69_cast_fp16 = concat(axis = var_546, interleave = x_69_interleave_0, values = (x_67_cast_fp16, var_647_cast_fp16))[name = string("x_69_cast_fp16")];
542
+ tensor<int32, [1]> out_43_axes_0 = const()[name = string("out_43_axes_0"), val = tensor<int32, [1]>([1])];
543
+ fp16 var_657_to_fp16 = const()[name = string("op_657_to_fp16"), val = fp16(0x1.5p-17)];
544
+ tensor<fp16, [?, 2048, 1, 3]> out_43_cast_fp16 = layer_norm(axes = out_43_axes_0, epsilon = var_657_to_fp16, x = x_69_cast_fp16)[name = string("out_43_cast_fp16")];
545
+ tensor<fp16, [1, 2048, 1, 1]> layer_encoder_layers_3_post_attention_layernorm_weight_to_fp16 = const()[name = string("layer_encoder_layers_3_post_attention_layernorm_weight_to_fp16"), val = tensor<fp16, [1, 2048, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(94538880)))];
546
+ tensor<fp16, [?, 2048, 1, 3]> out_45_cast_fp16 = mul(x = out_43_cast_fp16, y = layer_encoder_layers_3_post_attention_layernorm_weight_to_fp16)[name = string("out_45_cast_fp16")];
547
+ tensor<int32, [2]> var_663_split_sizes_0 = const()[name = string("op_663_split_sizes_0"), val = tensor<int32, [2]>([1024, 1024])];
548
+ int32 var_663_axis_0 = const()[name = string("op_663_axis_0"), val = int32(1)];
549
+ tensor<fp16, [?, 1024, 1, 3]> var_663_cast_fp16_0, tensor<fp16, [?, 1024, 1, 3]> var_663_cast_fp16_1 = split(axis = var_663_axis_0, split_sizes = var_663_split_sizes_0, x = out_45_cast_fp16)[name = string("op_663_cast_fp16")];
550
+ string input_pad_type_0 = const()[name = string("input_pad_type_0"), val = string("valid")];
551
+ tensor<int32, [2]> input_strides_0 = const()[name = string("input_strides_0"), val = tensor<int32, [2]>([1, 1])];
552
+ tensor<int32, [4]> input_pad_0 = const()[name = string("input_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
553
+ tensor<int32, [2]> input_dilations_0 = const()[name = string("input_dilations_0"), val = tensor<int32, [2]>([1, 1])];
554
+ int32 input_groups_0 = const()[name = string("input_groups_0"), val = int32(1)];
555
+ tensor<fp16, [4096, 1024, 1, 1]> var_532_to_fp16 = const()[name = string("op_532_to_fp16"), val = tensor<fp16, [4096, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(94543040)))];
556
+ tensor<fp16, [?, 4096, 1, 3]> input_cast_fp16 = conv(dilations = input_dilations_0, groups = input_groups_0, pad = input_pad_0, pad_type = input_pad_type_0, strides = input_strides_0, weight = var_532_to_fp16, x = var_663_cast_fp16_0)[name = string("input_cast_fp16")];
557
+ tensor<fp16, [?, 4096, 1, 3]> var_671_cast_fp16 = silu(x = input_cast_fp16)[name = string("op_671_cast_fp16")];
558
+ string var_676_pad_type_0 = const()[name = string("op_676_pad_type_0"), val = string("valid")];
559
+ tensor<int32, [2]> var_676_strides_0 = const()[name = string("op_676_strides_0"), val = tensor<int32, [2]>([1, 1])];
560
+ tensor<int32, [4]> var_676_pad_0 = const()[name = string("op_676_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
561
+ tensor<int32, [2]> var_676_dilations_0 = const()[name = string("op_676_dilations_0"), val = tensor<int32, [2]>([1, 1])];
562
+ int32 var_676_groups_0 = const()[name = string("op_676_groups_0"), val = int32(1)];
563
+ tensor<fp16, [4096, 1024, 1, 1]> var_533_to_fp16 = const()[name = string("op_533_to_fp16"), val = tensor<fp16, [4096, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(102931712)))];
564
+ tensor<fp16, [?, 4096, 1, 3]> var_676_cast_fp16 = conv(dilations = var_676_dilations_0, groups = var_676_groups_0, pad = var_676_pad_0, pad_type = var_676_pad_type_0, strides = var_676_strides_0, weight = var_533_to_fp16, x = var_663_cast_fp16_0)[name = string("op_676_cast_fp16")];
565
+ tensor<fp16, [?, 4096, 1, 3]> x_75_cast_fp16 = mul(x = var_671_cast_fp16, y = var_676_cast_fp16)[name = string("x_75_cast_fp16")];
566
+ string hidden_states_pad_type_0 = const()[name = string("hidden_states_pad_type_0"), val = string("valid")];
567
+ tensor<int32, [2]> hidden_states_strides_0 = const()[name = string("hidden_states_strides_0"), val = tensor<int32, [2]>([1, 1])];
568
+ tensor<int32, [4]> hidden_states_pad_0 = const()[name = string("hidden_states_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
569
+ tensor<int32, [2]> hidden_states_dilations_0 = const()[name = string("hidden_states_dilations_0"), val = tensor<int32, [2]>([1, 1])];
570
+ int32 hidden_states_groups_0 = const()[name = string("hidden_states_groups_0"), val = int32(1)];
571
+ tensor<fp16, [1024, 4096, 1, 1]> var_534_to_fp16 = const()[name = string("op_534_to_fp16"), val = tensor<fp16, [1024, 4096, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(111320384)))];
572
+ tensor<fp16, [?, 1024, 1, 3]> hidden_states_cast_fp16 = conv(dilations = hidden_states_dilations_0, groups = hidden_states_groups_0, pad = hidden_states_pad_0, pad_type = hidden_states_pad_type_0, strides = hidden_states_strides_0, weight = var_534_to_fp16, x = x_75_cast_fp16)[name = string("hidden_states_cast_fp16")];
573
+ tensor<fp16, [?, 1024, 1, 3]> x_77_cast_fp16 = add(x = x_67_cast_fp16, y = hidden_states_cast_fp16)[name = string("x_77_cast_fp16")];
574
+ int32 var_688 = const()[name = string("op_688"), val = int32(1)];
575
+ fp16 const_17_promoted_to_fp16 = const()[name = string("const_17_promoted_to_fp16"), val = fp16(-0x1p+0)];
576
+ tensor<fp16, [?, 1024, 1, 3]> var_691_cast_fp16 = mul(x = x_77_cast_fp16, y = const_17_promoted_to_fp16)[name = string("op_691_cast_fp16")];
577
+ bool x_79_interleave_0 = const()[name = string("x_79_interleave_0"), val = bool(false)];
578
+ tensor<fp16, [?, 2048, 1, 3]> x_79_cast_fp16 = concat(axis = var_688, interleave = x_79_interleave_0, values = (x_77_cast_fp16, var_691_cast_fp16))[name = string("x_79_cast_fp16")];
579
+ tensor<int32, [1]> out_49_axes_0 = const()[name = string("out_49_axes_0"), val = tensor<int32, [1]>([1])];
580
+ fp16 var_701_to_fp16 = const()[name = string("op_701_to_fp16"), val = fp16(0x1.5p-17)];
581
+ tensor<fp16, [?, 2048, 1, 3]> out_49_cast_fp16 = layer_norm(axes = out_49_axes_0, epsilon = var_701_to_fp16, x = x_79_cast_fp16)[name = string("out_49_cast_fp16")];
582
+ tensor<fp16, [1, 2048, 1, 1]> layer_encoder_norm_weight_to_fp16 = const()[name = string("layer_encoder_norm_weight_to_fp16"), val = tensor<fp16, [1, 2048, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(119709056)))];
583
+ tensor<fp16, [?, 2048, 1, 3]> out_51_cast_fp16 = mul(x = out_49_cast_fp16, y = layer_encoder_norm_weight_to_fp16)[name = string("out_51_cast_fp16")];
584
+ tensor<int32, [2]> var_707_split_sizes_0 = const()[name = string("op_707_split_sizes_0"), val = tensor<int32, [2]>([1024, 1024])];
585
+ int32 var_707_axis_0 = const()[name = string("op_707_axis_0"), val = int32(1)];
586
+ tensor<fp16, [?, 1024, 1, 3]> var_707_cast_fp16_0, tensor<fp16, [?, 1024, 1, 3]> var_707_cast_fp16_1 = split(axis = var_707_axis_0, split_sizes = var_707_split_sizes_0, x = out_51_cast_fp16)[name = string("op_707_cast_fp16")];
587
+ tensor<int32, [4]> x_begin_0 = const()[name = string("x_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
588
+ tensor<int32, [4]> x_end_0 = const()[name = string("x_end_0"), val = tensor<int32, [4]>([0, 1024, 1, 1])];
589
+ tensor<bool, [4]> x_end_mask_0 = const()[name = string("x_end_mask_0"), val = tensor<bool, [4]>([true, true, true, false])];
590
+ tensor<fp16, [?, 1024, 1, 1]> x_cast_fp16 = slice_by_index(begin = x_begin_0, end = x_end_0, end_mask = x_end_mask_0, x = var_707_cast_fp16_0)[name = string("x_cast_fp16")];
591
+ string var_725_pad_type_0 = const()[name = string("op_725_pad_type_0"), val = string("valid")];
592
+ tensor<int32, [2]> var_725_strides_0 = const()[name = string("op_725_strides_0"), val = tensor<int32, [2]>([1, 1])];
593
+ tensor<int32, [4]> var_725_pad_0 = const()[name = string("op_725_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
594
+ tensor<int32, [2]> var_725_dilations_0 = const()[name = string("op_725_dilations_0"), val = tensor<int32, [2]>([1, 1])];
595
+ int32 var_725_groups_0 = const()[name = string("op_725_groups_0"), val = int32(1)];
596
+ tensor<fp16, [1024, 1024, 1, 1]> var_719_to_fp16 = const()[name = string("op_719_to_fp16"), val = tensor<fp16, [1024, 1024, 1, 1]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(119713216)))];
597
+ tensor<fp16, [1024]> enc_to_lm_proj_bias_to_fp16 = const()[name = string("enc_to_lm_proj_bias_to_fp16"), val = tensor<fp16, [1024]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(121810432)))];
598
+ tensor<fp16, [?, 1024, 1, 1]> output = conv(bias = enc_to_lm_proj_bias_to_fp16, dilations = var_725_dilations_0, groups = var_725_groups_0, pad = var_725_pad_0, pad_type = var_725_pad_type_0, strides = var_725_strides_0, weight = var_719_to_fp16, x = x_cast_fp16)[name = string("op_725_cast_fp16")];
599
+ } -> (output);
600
+ }
voxcpm_feat_encoder_ane_enum_12.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:682ec58e9771cfd6bbfde723d3ba7fc927cda7e89c69722885856d2c998189e3
3
+ size 121812544