Update README.md
Browse files
README.md
CHANGED
|
@@ -6,14 +6,71 @@ tags:
|
|
| 6 |
---
|
| 7 |
# Whitebox Cartoonizer
|
| 8 |
|
| 9 |
-
Whitebox Cartoonizer [1] model in the `SavedModel` format. The model was exported to the SavedModel format using
|
|
|
|
|
|
|
| 10 |
|
| 11 |
## Inference code
|
| 12 |
|
| 13 |
```py
|
| 14 |
-
|
| 15 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
---
|
| 7 |
# Whitebox Cartoonizer
|
| 8 |
|
| 9 |
+
Whitebox Cartoonizer [1] model in the `SavedModel` format. The model was exported to the SavedModel format using
|
| 10 |
+
[this notebook](https://huggingface.co/sayakpaul/whitebox-cartoonizer/blob/main/export-saved-model.ipynb). Original model
|
| 11 |
+
repository can be found [here](https://github.com/SystemErrorWang/White-box-Cartoonization).
|
| 12 |
|
| 13 |
## Inference code
|
| 14 |
|
| 15 |
```py
|
| 16 |
+
import cv2
|
| 17 |
+
import numpy as np
|
| 18 |
+
import requests
|
| 19 |
+
import tensorflow as tf
|
| 20 |
+
from huggingface_hub import snapshot_download
|
| 21 |
+
from PIL import Image
|
| 22 |
|
| 23 |
+
|
| 24 |
+
def resize_crop(image):
|
| 25 |
+
h, w, c = np.shape(image)
|
| 26 |
+
if min(h, w) > 720:
|
| 27 |
+
if h > w:
|
| 28 |
+
h, w = int(720 * h / w), 720
|
| 29 |
+
else:
|
| 30 |
+
h, w = 720, int(720 * w / h)
|
| 31 |
+
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)
|
| 32 |
+
h, w = (h // 8) * 8, (w // 8) * 8
|
| 33 |
+
image = image[:h, :w, :]
|
| 34 |
+
return image
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def download_image(url):
|
| 38 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 39 |
+
image = image.convert("RGB")
|
| 40 |
+
image = np.array(image)
|
| 41 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
| 42 |
+
return image
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def preprocess_image(image):
|
| 46 |
+
image = resize_crop(image)
|
| 47 |
+
image = image.astype(np.float32) / 127.5 - 1
|
| 48 |
+
image = np.expand_dims(image, axis=0)
|
| 49 |
+
image = tf.constant(image)
|
| 50 |
+
return image
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# Load the model and extract concrete function.
|
| 54 |
+
model_path = snapshot_download("sayakpaul/whitebox-cartoonizer")
|
| 55 |
+
loaded_model = tf.saved_model.load(model_path)
|
| 56 |
+
concrete_func = loaded_model.signatures["serving_default"]
|
| 57 |
+
|
| 58 |
+
# Download and preprocess image.
|
| 59 |
+
image_url = "https://huggingface.co/spaces/sayakpaul/cartoonizer-demo-onnx/resolve/main/mountain.jpeg"
|
| 60 |
+
image = download_image(image_url)
|
| 61 |
+
preprocessed_image = preprocess_image(image)
|
| 62 |
+
|
| 63 |
+
# Run inference.
|
| 64 |
+
result = concrete_func(preprocessed_image)["final_output:0"]
|
| 65 |
+
|
| 66 |
+
# Post-process the result and serialize it.
|
| 67 |
+
output = (result[0].numpy() + 1.0) * 127.5
|
| 68 |
+
output = np.clip(output, 0, 255).astype(np.uint8)
|
| 69 |
+
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
| 70 |
+
output_image = Image.fromarray(output)
|
| 71 |
+
output_image.save("result.png")
|
| 72 |
+
```
|
| 73 |
+
|
| 74 |
+
## References
|
| 75 |
+
|
| 76 |
+
[1] Learning to Cartoonize Using White-box Cartoon Representations; Xinrui Wang and Jinze Yu; CVPR 2020.
|