Update SA-TR.py
Browse files
SA-TR.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
|
| 3 |
+
|
| 4 |
+
model= transformers.AutoModelForSequenceClassification.from_pretrained(".")
|
| 5 |
+
tokenizer=transformers.AutoTokenizer.from_pretrained(".")
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
dosya=["dvd.tsv","Books.tsv","Kitchen.tsv","electronics.tsv"][3]
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
data = [line.strip().split("\t") for line in open(dosya)]
|
| 15 |
+
|
| 16 |
+
sa= pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
real=[d[1] for d in data]
|
| 20 |
+
|
| 21 |
+
pred=[sa(d[0]) for d in data]
|
| 22 |
+
pred2=[p[0]['label'].split("_")[1] for p in pred]
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
res=[a==b for (a,b) in zip(pred2, real)]
|
| 26 |
+
sum(res)/len(res)
|
| 27 |
+
|