Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,157 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
# Model Card for
|
| 7 |
-
|
| 8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
## Model Details
|
| 13 |
|
| 14 |
### Model Description
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
|
| 20 |
-
- **Developed by:** [
|
| 21 |
-
- **
|
| 22 |
-
- **
|
| 23 |
-
- **
|
| 24 |
-
- **
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
### Model Sources
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
- **Repository:** [More Information Needed]
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
|
| 36 |
## Uses
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
| 75 |
|
| 76 |
## Training Details
|
| 77 |
|
| 78 |
-
|
| 79 |
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
[More Information Needed]
|
| 83 |
|
| 84 |
### Training Procedure
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
|
| 93 |
-
#### Training
|
| 94 |
|
| 95 |
-
|
| 96 |
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
## Evaluation
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
|
| 195 |
-
|
| 196 |
|
| 197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
-
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- bert
|
| 5 |
+
- ner
|
| 6 |
+
license: apache-2.0
|
| 7 |
+
datasets:
|
| 8 |
+
- eriktks/conll2003
|
| 9 |
+
base_model:
|
| 10 |
+
- google-bert/bert-base-uncased
|
| 11 |
+
pipeline_tag: token-classification
|
| 12 |
+
language:
|
| 13 |
+
- en
|
| 14 |
+
|
| 15 |
+
results:
|
| 16 |
+
- task:
|
| 17 |
+
type: token-classification
|
| 18 |
+
name: Token Classification
|
| 19 |
+
dataset:
|
| 20 |
+
name: conll2003
|
| 21 |
+
type: conll2003
|
| 22 |
+
config: conll2003
|
| 23 |
+
split: test
|
| 24 |
+
metrics:
|
| 25 |
+
- name: Precision
|
| 26 |
+
type: precision
|
| 27 |
+
value: 0.8992
|
| 28 |
+
verified: true
|
| 29 |
+
- name: Recall
|
| 30 |
+
type: recall
|
| 31 |
+
value: 0.9115
|
| 32 |
+
verified: true
|
| 33 |
+
- name: F1
|
| 34 |
+
type: f1
|
| 35 |
+
value: 0.0.9053
|
| 36 |
+
verified: true
|
| 37 |
+
- name: loss
|
| 38 |
+
type: loss
|
| 39 |
+
value: 0.040937
|
| 40 |
+
verified: true
|
| 41 |
---
|
| 42 |
|
| 43 |
+
# Model Card for Bert Named Entity Recognition
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
### Model Description
|
| 46 |
|
| 47 |
+
This is a chat fine-tuned version of `google-bert/bert-base-uncased`, designed to perform Named Entity Recognition on a text sentence imput.
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
- **Developed by:** [Sartaj](https://huggingface.co/sartajbhuvaji)
|
| 50 |
+
- **Finetuned from model:** `google-bert/bert-base-uncased`
|
| 51 |
+
- **Language(s):** English
|
| 52 |
+
- **License:** apache-2.0
|
| 53 |
+
- **Framework:** Hugging Face Transformers
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
### Model Sources
|
| 56 |
|
| 57 |
+
- **Repository:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased)
|
| 58 |
+
- **Paper:** [BERT-paper](https://huggingface.co/papers/1810.04805)
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
## Uses
|
| 61 |
|
| 62 |
+
Model can be used to recognize Named Entities in text.
|
| 63 |
+
|
| 64 |
+
## Usage
|
| 65 |
+
|
| 66 |
+
```python
|
| 67 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
| 68 |
+
from transformers import pipeline
|
| 69 |
+
|
| 70 |
+
tokenizer = AutoTokenizer.from_pretrained("sartajbhuvaji/bert-named-entity-recognition")
|
| 71 |
+
model = AutoModelForTokenClassification.from_pretrained("sartajbhuvaji/bert-named-entity-recognition")
|
| 72 |
+
|
| 73 |
+
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
|
| 74 |
+
example = "My name is Wolfgang and I live in Berlin"
|
| 75 |
+
|
| 76 |
+
ner_results = nlp(example)
|
| 77 |
+
print(ner_results)
|
| 78 |
+
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
```json
|
| 82 |
+
[
|
| 83 |
+
{
|
| 84 |
+
"end": 19,
|
| 85 |
+
"entity": "B-PER",
|
| 86 |
+
"index": 4,
|
| 87 |
+
"score": 0.99633455,
|
| 88 |
+
"start": 11,
|
| 89 |
+
"word": "wolfgang"
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"end": 40,
|
| 93 |
+
"entity": "B-LOC",
|
| 94 |
+
"index": 9,
|
| 95 |
+
"score": 0.9987465,
|
| 96 |
+
"start": 34,
|
| 97 |
+
"word": "berlin"
|
| 98 |
+
}
|
| 99 |
+
]
|
| 100 |
+
```
|
| 101 |
|
| 102 |
## Training Details
|
| 103 |
|
| 104 |
+
- **Dataset** : [eriktks/conll2003](https://huggingface.co/datasets/eriktks/conll2003)
|
| 105 |
|
| 106 |
+
| Abbreviation | Description |
|
| 107 |
+
|---|---|
|
| 108 |
+
| O | Outside of a named entity |
|
| 109 |
+
| B-MISC | Beginning of a miscellaneous entity right after another miscellaneous entity |
|
| 110 |
+
| I-MISC | Miscellaneous entity |
|
| 111 |
+
| B-PER | Beginning of a person's name right after another person's name |
|
| 112 |
+
| I-PER | Person's name |
|
| 113 |
+
| B-ORG | Beginning of an organization right after another organization |
|
| 114 |
+
| I-ORG | Organization |
|
| 115 |
+
| B-LOC | Beginning of a location right after another location |
|
| 116 |
+
| I-LOC | Location |
|
| 117 |
|
|
|
|
| 118 |
|
| 119 |
### Training Procedure
|
| 120 |
|
| 121 |
+
- Full Model Finetune
|
| 122 |
+
- Epochs : 5
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
+
#### Training Loss Curves
|
| 125 |
|
| 126 |
+

|
| 127 |
|
|
|
|
| 128 |
|
| 129 |
+
## Trainer
|
| 130 |
+
- global_step: 4390
|
| 131 |
+
- training_loss: 0.040937909830132485
|
| 132 |
+
- train_runtime: 206.3611
|
| 133 |
+
- train_samples_per_second: 340.205
|
| 134 |
+
- train_steps_per_second: 21.273
|
| 135 |
+
- total_flos: 1702317283240608.0
|
| 136 |
+
- train_loss: 0.040937909830132485
|
| 137 |
+
- epoch: 5.0
|
| 138 |
|
| 139 |
## Evaluation
|
| 140 |
|
| 141 |
+
- Precision: 0.8992
|
| 142 |
+
- Recall: 0.9115
|
| 143 |
+
- F1 Score: 0.9053
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
+
### Classification Report
|
| 146 |
|
| 147 |
+
| Class | Precision | Recall | F1-Score | Support |
|
| 148 |
+
|---|---|---|---|---|
|
| 149 |
+
| LOC | 0.91 | 0.93 | 0.92 | 1668 |
|
| 150 |
+
| MISC | 0.76 | 0.81 | 0.78 | 702 |
|
| 151 |
+
| ORG | 0.87 | 0.88 | 0.88 | 1661 |
|
| 152 |
+
| PER | 0.98 | 0.97 | 0.97 | 1617 |
|
| 153 |
+
| **Micro Avg** | 0.90 | 0.91 | 0.91 | 5648 |
|
| 154 |
+
| **Macro Avg** | 0.88 | 0.90 | 0.89 | 5648 |
|
| 155 |
+
| **Weighted Avg** | 0.90 | 0.91 | 0.91 | 5648 |
|
| 156 |
|
| 157 |
+
- Evaluation Dataset : eriktks/conll2003
|