SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
| Label |
Examples |
| discard |
- 'Marcos informa que se puede realizar el pago de productos de BBVA a través de la Línea BBVA, cajeros automáticos, practicajas, ventanilla de sucursal o diversos comercios.'
- 'Se ha celebrado una reunión de alto nivel en 2024 para concretar proyectos de inversión, incluyendo la cooperación con BBVA para la construcción de un portadrones y en el ámbito turístico.'
- 'Diversificar es clave para alcanzar nuestros objetivos en inversiones y en la vida, descubre cómo tus decisiones financieras pueden impactar tu vida personal en este artículo.'
|
| relevant |
- 'La persona recibió un correo idéntico al que le explicaron que es una técnica de estafa que simula enviarlo desde su propia cuenta.'
- 'La cancelación de la cuenta se ha demorado un mes y al solicitar 200 euros para un viaje, me han cobrado 9 euros de comisión.'
- 'El Santander logró récords en beneficios y comisiones a los desfavorecidos bajo el ministerio del consagrado en Consumo, mientras se obsesionan con la apariencia y carecen de dignidad y principios.'
|
Evaluation
Metrics
| Label |
Accuracy |
| all |
0.8029 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("saraestevez/setfit-minilm-bank-tweets-processed-400")
preds = model("La app de BBVA está caída, pero se pide paciencia para los depósitos de mañana.")
Training Details
Training Set Metrics
| Training set |
Min |
Median |
Max |
| Word count |
1 |
21.6612 |
44 |
| Label |
Training Sample Count |
| discard |
400 |
| relevant |
400 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch |
Step |
Training Loss |
Validation Loss |
| 0.0005 |
1 |
0.3197 |
- |
| 0.025 |
50 |
0.2199 |
- |
| 0.05 |
100 |
0.2876 |
- |
| 0.075 |
150 |
0.2568 |
- |
| 0.1 |
200 |
0.196 |
- |
| 0.125 |
250 |
0.15 |
- |
| 0.15 |
300 |
0.1475 |
- |
| 0.175 |
350 |
0.081 |
- |
| 0.2 |
400 |
0.0441 |
- |
| 0.225 |
450 |
0.0228 |
- |
| 0.25 |
500 |
0.0017 |
- |
| 0.275 |
550 |
0.0083 |
- |
| 0.3 |
600 |
0.002 |
- |
| 0.325 |
650 |
0.0013 |
- |
| 0.35 |
700 |
0.0011 |
- |
| 0.375 |
750 |
0.0014 |
- |
| 0.4 |
800 |
0.0004 |
- |
| 0.425 |
850 |
0.0001 |
- |
| 0.45 |
900 |
0.0118 |
- |
| 0.475 |
950 |
0.0002 |
- |
| 0.5 |
1000 |
0.0012 |
- |
| 0.525 |
1050 |
0.0003 |
- |
| 0.55 |
1100 |
0.0001 |
- |
| 0.575 |
1150 |
0.0003 |
- |
| 0.6 |
1200 |
0.0001 |
- |
| 0.625 |
1250 |
0.0001 |
- |
| 0.65 |
1300 |
0.0001 |
- |
| 0.675 |
1350 |
0.0002 |
- |
| 0.7 |
1400 |
0.0197 |
- |
| 0.725 |
1450 |
0.0002 |
- |
| 0.75 |
1500 |
0.0002 |
- |
| 0.775 |
1550 |
0.0001 |
- |
| 0.8 |
1600 |
0.0004 |
- |
| 0.825 |
1650 |
0.0001 |
- |
| 0.85 |
1700 |
0.0001 |
- |
| 0.875 |
1750 |
0.0001 |
- |
| 0.9 |
1800 |
0.0001 |
- |
| 0.925 |
1850 |
0.0001 |
- |
| 0.95 |
1900 |
0.0158 |
- |
| 0.975 |
1950 |
0.0001 |
- |
| 1.0 |
2000 |
0.0001 |
- |
Framework Versions
- Python: 3.11.0rc1
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu121
- Datasets: 2.19.1
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}