Multimodal
Collection
3 items
•
Updated
This model is a fine-tuned version of naver-clova-ix/donut-base on an sam749/SROIE-donut dataset.
from transformers import DonutProcessor, VisionEncoderDecoderModel
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
processor = DonutProcessor.from_pretrained("sam749/donut-base-finetuned-sroie-v2")
model = VisionEncoderDecoderModel.from_pretrained("sam749/donut-base-finetuned-sroie-v2", dtype=dtype)
model.to(device)
def generate(image):
# prepare encoder inputs
pixel_values = processor(image, return_tensors="pt").pixel_values
# generate answer
outputs = model.generate(
pixel_values.to(device),
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
# postprocess
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
return processor.token2json(sequence)
More information needed
More information needed
The following hyperparameters were used during training:
Base model
naver-clova-ix/donut-base