PPO Agent playing LunarLander-v3
This is a trained model of a PPO agent playing LunarLander-v3
using the stable-baselines3 library.

Usage (with Stable-baselines3)
from huggingface_sb3 import load_from_hub
from stable_baselines3.common.evaluation import evaluate_policy
repo_id = "salc2/rl-lunar-lander-v3-1Msteps" # The repo_id
filename = "models/ppo_lunar_steps1_M.zip" # The model filename.zip
checkpoint = load_from_hub(repo_id, filename)
model = PPO.load(checkpoint)
eval_env = gym.make("LunarLander-v3")
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
...
- Downloads last month
- 26
Evaluation results
- mean_reward on LunarLander-v3self-reported253.32 +/- 15.07