chore: 刪除與 hg 不相容的 README 內容
Browse files
README.md
DELETED
|
@@ -1,209 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
backbone:
|
| 3 |
-
- OFA
|
| 4 |
-
domain:
|
| 5 |
-
- multi-modal
|
| 6 |
-
frameworks:
|
| 7 |
-
- pytorch
|
| 8 |
-
license: Apache License 2.0
|
| 9 |
-
metrics:
|
| 10 |
-
- accuracy
|
| 11 |
-
tags:
|
| 12 |
-
- Alibaba
|
| 13 |
-
- ICML2022
|
| 14 |
-
- arxiv:2202.03052
|
| 15 |
-
tasks:
|
| 16 |
-
- ocr-recognition
|
| 17 |
-
|
| 18 |
-
datasets:
|
| 19 |
-
evaluation:
|
| 20 |
-
- modelscope/ocr_fudanvi_zh
|
| 21 |
-
train:
|
| 22 |
-
- modelscope/ocr_fudanvi_zh
|
| 23 |
-
finetune-support: True
|
| 24 |
-
integrating: False
|
| 25 |
-
widgets:
|
| 26 |
-
- task: ofa-ocr-recognition
|
| 27 |
-
inputs:
|
| 28 |
-
- name: image
|
| 29 |
-
title: 图片
|
| 30 |
-
type: image
|
| 31 |
-
validator:
|
| 32 |
-
max_resolution: 5000*5000
|
| 33 |
-
max_size: 10M
|
| 34 |
-
examples:
|
| 35 |
-
- name: 1
|
| 36 |
-
title: 示例1
|
| 37 |
-
inputs:
|
| 38 |
-
- data: https://xingchen-data.oss-cn-zhangjiakou.aliyuncs.com/maas/ocr/ocr_general_demo.png
|
| 39 |
-
name: image
|
| 40 |
-
inferencespec:
|
| 41 |
-
cpu: 4
|
| 42 |
-
gpu: 1
|
| 43 |
-
gpu_memory: 16000
|
| 44 |
-
memory: 43000
|
| 45 |
-
integrating: True
|
| 46 |
-
---
|
| 47 |
-
# OFA-文字识别
|
| 48 |
-
## News
|
| 49 |
-
- 2023年1月:
|
| 50 |
-
- 优化了finetune流程,支持参数更新、自定义数据及脚本分布式训练等,见finetune示例。
|
| 51 |
-
- 2022年11月:
|
| 52 |
-
- 发布ModelScope 1.0版本,以下能力请使用1.0.2及以上版本。
|
| 53 |
-
- 支持finetune能力,新增[OFA Tutorial](https://www.modelscope.cn/docs/OFA%20Tutorial),finetune能力参考1.4节。
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
## 文字识别是什么?
|
| 57 |
-
文字识别,即给定一张文本图片,识别出图中所含文字并输出对应字符串,欢迎使用!
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
## 快速玩起来
|
| 61 |
-
玩转OFA只需区区以下6行代码,就是如此轻松!如果你觉得还不够方便,请点击右上角`Notebook`按钮,我们为你提供了配备了GPU的环境,你只需要在notebook里输入提供的代码,就可以把OFA玩起来了!
|
| 62 |
-
|
| 63 |
-
<p align="center">
|
| 64 |
-
<img src="resources/ocr_general_demo.png" alt="ocr" width="200" />
|
| 65 |
-
|
| 66 |
-
```python
|
| 67 |
-
from modelscope.pipelines import pipeline
|
| 68 |
-
from modelscope.utils.constant import Tasks
|
| 69 |
-
from modelscope.outputs import OutputKeys
|
| 70 |
-
|
| 71 |
-
# ModelScope Library >= 1.2.0
|
| 72 |
-
ocr_recognize = pipeline(Tasks.ocr_recognition, model='damo/ofa_ocr-recognition_general_base_zh', model_revision='v1.0.2')
|
| 73 |
-
result = ocr_recognize('https://xingchen-data.oss-cn-zhangjiakou.aliyuncs.com/maas/ocr/ocr_general_demo.png')
|
| 74 |
-
print(result[OutputKeys.TEXT])
|
| 75 |
-
```
|
| 76 |
-
<br>
|
| 77 |
-
|
| 78 |
-
## OFA是什么?
|
| 79 |
-
OFA(One-For-All)是通用多模态预训练模型,使用简单的序列到序列的学习框架统一模态(跨模态、视觉、语言等模态)和任务(如图片生成、视觉定位、图片描述、图片分类、文本生成等),详见我们发表于ICML 2022的论文:[OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework](https://arxiv.org/abs/2202.03052),以及我们的官方Github仓库[https://github.com/OFA-Sys/OFA](https://github.com/OFA-Sys/OFA)。
|
| 80 |
-
|
| 81 |
-
<p align="center">
|
| 82 |
-
<br>
|
| 83 |
-
<img src="resources/OFA_logo_tp_path.svg" width="150" />
|
| 84 |
-
<br>
|
| 85 |
-
<p>
|
| 86 |
-
<br>
|
| 87 |
-
|
| 88 |
-
<p align="center">
|
| 89 |
-
<a href="https://github.com/OFA-Sys/OFA">Github</a>  |  <a href="https://arxiv.org/abs/2202.03052">Paper </a>  |  Blog
|
| 90 |
-
</p>
|
| 91 |
-
|
| 92 |
-
<p align="center">
|
| 93 |
-
<br>
|
| 94 |
-
<video src="https://xingchen-data.oss-cn-zhangjiakou.aliyuncs.com/maas/resources/modelscope_web/demo.mp4" loop="loop" autoplay="autoplay" muted width="100%"></video>
|
| 95 |
-
<br>
|
| 96 |
-
</p>
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
## 为什么OFA是文字识别的最佳选择?
|
| 100 |
-
OFA在文字识别(ocr recognize)在公开数据集(including RCTW, ReCTS, LSVT, ArT, CTW)中进行评测, 在准确率指标上达到SOTA结果,具体如下:
|
| 101 |
-
<p align="left">
|
| 102 |
-
<table border="1" width="100%">
|
| 103 |
-
<tr align="center">
|
| 104 |
-
<td>Model</td><td>Scene</td><td>Web</td><td>Document</td><td>Handwriting</td><td>Avg</td>
|
| 105 |
-
</tr>
|
| 106 |
-
<tr align="center">
|
| 107 |
-
<td>SAR</td><td>62.5</td><td>54.3</td><td>93.8</td><td>31.4</td><td>67.3</td>
|
| 108 |
-
</tr>
|
| 109 |
-
<tr align="center">
|
| 110 |
-
<td>TransOCR</td><td>63.3</td><td>62.3</td><td>96.9</td><td>53.4</td><td>72.8</td>
|
| 111 |
-
</tr>
|
| 112 |
-
<tr align="center">
|
| 113 |
-
<td>MaskOCR-base</td><td>73.9</td><td>74.8</td><td>99.3</td><td>63.7</td><td>80.8</td>
|
| 114 |
-
</tr>
|
| 115 |
-
<tr align="center">
|
| 116 |
-
<td>OFA-OCR</td><td>82.9</td><td>81.7</td><td>99.1</td><td>69.0</td><td>86.0</td>
|
| 117 |
-
</tr>
|
| 118 |
-
</table>
|
| 119 |
-
<br>
|
| 120 |
-
</p>
|
| 121 |
-
|
| 122 |
-
## 模型训练流程
|
| 123 |
-
|
| 124 |
-
### 训练数据介绍
|
| 125 |
-
本模型训练数据集是复旦大学视觉智能实验室,数据链接:https://github.com/FudanVI/benchmarking-chinese-text-recognition
|
| 126 |
-
场景数据集图片采样:
|
| 127 |
-
<p align="center">
|
| 128 |
-
<img src="./resources/ocr_general.png" width="500" />
|
| 129 |
-
</p>
|
| 130 |
-
|
| 131 |
-
### 训练流程
|
| 132 |
-
模型及finetune细节请参考[OFA Tutorial](https://modelscope.cn/docs/OFA_Tutorial#1.4%20%E5%A6%82%E4%BD%95%E8%AE%AD%E7%BB%83) 1.4节。
|
| 133 |
-
|
| 134 |
-
### Finetune示例
|
| 135 |
-
```python
|
| 136 |
-
import tempfile
|
| 137 |
-
from modelscope.msdatasets import MsDataset
|
| 138 |
-
from modelscope.metainfo import Trainers
|
| 139 |
-
from modelscope.trainers import build_trainer
|
| 140 |
-
from modelscope.utils.constant import DownloadMode
|
| 141 |
-
|
| 142 |
-
train_dataset = MsDataset(MsDataset.load(
|
| 143 |
-
'ocr_fudanvi_zh',
|
| 144 |
-
subset_name='scene',
|
| 145 |
-
namespace='modelscope',
|
| 146 |
-
split='train[:100]',
|
| 147 |
-
download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS).remap_columns({
|
| 148 |
-
'label': 'text'
|
| 149 |
-
}))
|
| 150 |
-
|
| 151 |
-
test_dataset = MsDataset(
|
| 152 |
-
MsDataset.load(
|
| 153 |
-
'ocr_fudanvi_zh',
|
| 154 |
-
subset_name='scene',
|
| 155 |
-
namespace='modelscope',
|
| 156 |
-
split='test[:20]',
|
| 157 |
-
download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS).remap_columns({
|
| 158 |
-
'label': 'text'
|
| 159 |
-
}))
|
| 160 |
-
|
| 161 |
-
# 可以在代码修改 configuration 的配置
|
| 162 |
-
def cfg_modify_fn(cfg):
|
| 163 |
-
cfg.train.hooks = [{
|
| 164 |
-
'type': 'CheckpointHook',
|
| 165 |
-
'interval': 2
|
| 166 |
-
}, {
|
| 167 |
-
'type': 'TextLoggerHook',
|
| 168 |
-
'interval': 1
|
| 169 |
-
}, {
|
| 170 |
-
'type': 'IterTimerHook'
|
| 171 |
-
}]
|
| 172 |
-
cfg.train.max_epochs=2
|
| 173 |
-
return cfg
|
| 174 |
-
|
| 175 |
-
args = dict(
|
| 176 |
-
model='damo/ofa_ocr-recognition_general_base_zh',
|
| 177 |
-
model_revision='v1.0.2',
|
| 178 |
-
train_dataset=train_dataset,
|
| 179 |
-
eval_dataset=test_dataset,
|
| 180 |
-
cfg_modify_fn=cfg_modify_fn,
|
| 181 |
-
work_dir = tempfile.TemporaryDirectory().name)
|
| 182 |
-
trainer = build_trainer(name=Trainers.ofa, default_args=args)
|
| 183 |
-
trainer.train()
|
| 184 |
-
```
|
| 185 |
-
|
| 186 |
-
## 模型局限性以及可能的偏差
|
| 187 |
-
训练数据集自身有局限,有可能产生一些偏差,请用户自行评测后决定如何使用。
|
| 188 |
-
|
| 189 |
-
## 相关论文以及引用
|
| 190 |
-
如果你觉得OFA好用,喜欢我们的工作,欢迎引用:
|
| 191 |
-
```
|
| 192 |
-
@article{wang2022ofa,
|
| 193 |
-
author = {Peng Wang and
|
| 194 |
-
An Yang and
|
| 195 |
-
Rui Men and
|
| 196 |
-
Junyang Lin and
|
| 197 |
-
Shuai Bai and
|
| 198 |
-
Zhikang Li and
|
| 199 |
-
Jianxin Ma and
|
| 200 |
-
Chang Zhou and
|
| 201 |
-
Jingren Zhou and
|
| 202 |
-
Hongxia Yang},
|
| 203 |
-
title = {OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence
|
| 204 |
-
Learning Framework},
|
| 205 |
-
journal = {CoRR},
|
| 206 |
-
volume = {abs/2202.03052},
|
| 207 |
-
year = {2022}
|
| 208 |
-
}
|
| 209 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|