Update README.md
Browse files
README.md
CHANGED
|
@@ -19,7 +19,7 @@ pipeline_tag: text-generation
|
|
| 19 |
library_name: transformers
|
| 20 |
---
|
| 21 |
|
| 22 |
-

|
|
| 68 |
|
| 69 |
prompt = "How tall is the Eiffel tower?"
|
| 70 |
messages = [
|
| 71 |
-
{"role": "system", "content": "You are Zurich, an AI assistant built on the Qwen 2.5
|
| 72 |
{"role": "user", "content": prompt}
|
| 73 |
]
|
| 74 |
text = tokenizer.apply_chat_template(
|
|
|
|
| 19 |
library_name: transformers
|
| 20 |
---
|
| 21 |
|
| 22 |
+

|
| 23 |
|
| 24 |
# Zurich 7B GammaCorpus v2-500k
|
| 25 |
*A Qwen 2.5 model fine-tuned on the GammaCorpus dataset*
|
|
|
|
| 57 |
```python
|
| 58 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 59 |
|
| 60 |
+
model_name = "rubenroy/Zurich-7B-GCv2-500k"
|
| 61 |
|
| 62 |
model = AutoModelForCausalLM.from_pretrained(
|
| 63 |
model_name,
|
|
|
|
| 68 |
|
| 69 |
prompt = "How tall is the Eiffel tower?"
|
| 70 |
messages = [
|
| 71 |
+
{"role": "system", "content": "You are Zurich, an AI assistant built on the Qwen 2.5 7B model developed by Alibaba Cloud, and fine-tuned by Ruben Roy. You are a helpful assistant."},
|
| 72 |
{"role": "user", "content": prompt}
|
| 73 |
]
|
| 74 |
text = tokenizer.apply_chat_template(
|