diff --git "a/README.md" "b/README.md"
new file mode 100644--- /dev/null
+++ "b/README.md"
@@ -0,0 +1,1164 @@
+---
+base_model: BAAI/bge-base-en-v1.5
+language:
+- en
+library_name: sentence-transformers
+license: apache-2.0
+metrics:
+- pearson_cosine
+- spearman_cosine
+- cosine_accuracy
+- cosine_accuracy_threshold
+- cosine_f1
+- cosine_f1_threshold
+- cosine_precision
+- cosine_recall
+- cosine_ap
+- cosine_mcc
+pipeline_tag: sentence-similarity
+tags:
+- sentence-transformers
+- sentence-similarity
+- feature-extraction
+- generated_from_trainer
+- dataset_size:3696
+- loss:MultipleNegativesRankingLoss
+widget:
+- source_sentence: Quels élèves sont elligibles pour participer à un concours réjional
+ de grec et de latin ?
+ sentences:
+ - Peuvent présenter une demande d’aide les porteurs de projet répondant à la définition
+ d’agriculteur actif et correspondant aux caractéristiques suivantes, les exploitations
+ agricoles exploitant directement, à titre individuel ou dans un cadre sociétaire
+ et ayant leur siège d’exploitation en Île-de-France
+ - 'Bénéficiaires: Collectivités - Institutions, Association - Régie par la loi de
+ 1901, Association - Fondation, Collectivité ou institution - Communes de < 2000
+ hab, Collectivité ou institution - Communes de 10 000 à 20 000 hab, Collectivité
+ ou institution - Communes de 2000 à 10 000 hab, Collectivité ou institution -
+ Communes de > 20 000 hab, Collectivité ou institution - EPCI, Collectivité ou
+ institution - EPT / Métropole du Grand Paris, Collectivité ou institution - Département,
+ Collectivité ou institution - Bailleurs sociaux, Collectivité ou institution -
+ Autre (GIP, copropriété, EPA...), Professionnel - Chercheur'
+ - 'Précision sure les bénéficiaires: Les lycéens inscrits dans des lycées publics
+ et privés (sous-contrat) en Île-de-France'
+- source_sentence: Qui peut bénéficier d'une aide financière de la région Île-de-France
+ pour améliorer les infrastructures de transport à proximité des lycées et des
+ îles de loisirs?
+ sentences:
+ - 'Bénéficiaires: Collectivité ou institution - Communes de 10 000 à 20 000 hab,
+ Collectivité ou institution - Communes de 2000 à 10 000 hab, Collectivité ou institution
+ - Communes de < 2000 hab, Collectivité ou institution - Communes de > 20 000 hab,
+ Collectivité ou institution - Département, Collectivité ou institution - EPT /
+ Métropole du Grand Paris'
+ - 'Nature de l''aide: Jusqu''à 80% des dépenses éligibles'
+ - 'Bénéficiaires: Collectivités - Institutions, Association - Régie par la loi de
+ 1901, Association - Fondation, Collectivité ou institution - Communes de < 2000
+ hab, Collectivité ou institution - Communes de 10 000 à 20 000 hab, Collectivité
+ ou institution - Communes de 2000 à 10 000 hab, Collectivité ou institution -
+ Communes de > 20 000 hab, Collectivité ou institution - EPCI, Collectivité ou
+ institution - EPT / Métropole du Grand Paris, Collectivité ou institution - Département,
+ Collectivité ou institution - Bailleurs sociaux, Collectivité ou institution -
+ Autre (GIP, copropriété, EPA...), Professionnel - Chercheur'
+- source_sentence: Quelles entités ont la possibilité de solliciter une augmentation
+ de leur capacité de formation pour les aides-soignants?
+ sentences:
+ - 'Type de project: Le projet porté par la structure candidate doit associer plusieurs
+ structures professionnelles franciliennes'
+ - Pour les instituts déjà autorisés, la demande d’extension de places est à formaliser
+ au plus tard le 15 mars 2024
+ - 'Le dispositif de développement de la pratique sportive en faveur de tous les
+ publics en Île-de-France vise à : Accompagner le développement de la pratique
+ sportive pour tous,Favoriser l’accès à la pratique sportive aux femmes, aux personnes
+ en situation de handicap, aux adolescents et aux seniors,Soutenir les sportifs
+ franciliens dans la recherche de l’excellence,Renforcer la qualité des encadrants
+ et de l’intervention des bénévoles,S’attacher au respect de la laïcité et des
+ valeurs républicaines,Prévenir les risques de radicalisation,S’assurer de la représentativité
+ des femmes dans les instances dirigeantes et dans l’encadrement,Renforcer le lien
+ avec les propriétés régionales que sont les îles de loisirs et le Creps,Réduire
+ la fracture territoriale avec une attention particulière pour les zones rurales
+ et les quartiers politique de la ville'
+- source_sentence: Subventions régionales récentes pour améliorer la qualité de l'air
+ dans les établissements publics
+ sentences:
+ - 'Date de début: Mardi 11 Avril 2023, à 00:00:00 (UTC+0200'
+ - 'Sont exclus : Les acquisitions foncières et frais afférents, Les études préalables,
+ L''assurance dommage ouvrage, Les travaux de démolition et de dépollution préalables,
+ Les travaux de voirie et réseaux divers'
+ - 'Type de project: Projets de territoires,Rédaction de chartes,Animation territoriale,Investissements
+ liés à l’environnement, la communication, le foncier, la remise en culture,Plateformes
+ alimentaires'
+- source_sentence: Quelles sont les entités qui peuvent bénéficier des aides régionales
+ pour le développement de projets de méthanisation?
+ sentences:
+ - 'Bénéficiaires: Professionnel - Agriculture et alimentation, Professionnel - TPE
+ < 10, Professionnel - PME < 250, Professionnel - ETI < 5000, Collectivité ou institution
+ - Autre (GIP, copropriété, EPA...), Collectivité ou institution - Bailleurs sociaux,
+ Collectivité ou institution - Communes de 10 000 à 20 000 hab, Collectivité ou
+ institution - Communes de 2000 à 10 000 hab, Collectivité ou institution - Communes
+ de < 2000 hab, Collectivité ou institution - Communes de > 20 000 hab, Collectivité
+ ou institution - Département, Collectivité ou institution - EPCI, Collectivité
+ ou institution - EPT / Métropole du Grand Paris, Collectivité ou institution -
+ Office de tourisme intercommunal'
+ - 'Pour évaluer votre situation numérique, vous pouvez réaliser en 5 min votre autodiagnostic
+ en ligne : Dédié aux commerçants (CCI),Dédié aux artisans (CMA)'
+ - 'Nature de l''aide: L’aide prend la forme d’une subvention en investissement.
+ La région peut intervenir jusqu’à 70% de votre budget d’investissement, dans la
+ limite de 50 000€ de dépenses éligibles'
+model-index:
+- name: BGE base Financial Matryoshka
+ results:
+ - task:
+ type: semantic-similarity
+ name: Semantic Similarity
+ dataset:
+ name: EmbeddingSimEval
+ type: EmbeddingSimEval
+ metrics:
+ - type: pearson_cosine
+ value: .nan
+ name: Pearson Cosine
+ - type: spearman_cosine
+ value: .nan
+ name: Spearman Cosine
+ - task:
+ type: binary-classification
+ name: Binary Classification
+ dataset:
+ name: BinaryClassifEval
+ type: BinaryClassifEval
+ metrics:
+ - type: cosine_accuracy
+ value: 0.9985443959243085
+ name: Cosine Accuracy
+ - type: cosine_accuracy_threshold
+ value: -0.1892727017402649
+ name: Cosine Accuracy Threshold
+ - type: cosine_f1
+ value: 0.9992716678805535
+ name: Cosine F1
+ - type: cosine_f1_threshold
+ value: -0.1892727017402649
+ name: Cosine F1 Threshold
+ - type: cosine_precision
+ value: 1.0
+ name: Cosine Precision
+ - type: cosine_recall
+ value: 0.9985443959243085
+ name: Cosine Recall
+ - type: cosine_ap
+ value: 1.0
+ name: Cosine Ap
+ - type: cosine_mcc
+ value: 0.0
+ name: Cosine Mcc
+---
+
+# BGE base Financial Matryoshka
+
+This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
+
+## Model Details
+
+### Model Description
+- **Model Type:** Sentence Transformer
+- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
+- **Maximum Sequence Length:** 512 tokens
+- **Output Dimensionality:** 768 dimensions
+- **Similarity Function:** Cosine Similarity
+- **Training Dataset:**
+ - json
+- **Language:** en
+- **License:** apache-2.0
+
+### Model Sources
+
+- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
+- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
+- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
+
+### Full Model Architecture
+
+```
+SentenceTransformer(
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
+ (2): Normalize()
+)
+```
+
+## Usage
+
+### Direct Usage (Sentence Transformers)
+
+First install the Sentence Transformers library:
+
+```bash
+pip install -U sentence-transformers
+```
+
+Then you can load this model and run inference.
+```python
+from sentence_transformers import SentenceTransformer
+
+# Download from the 🤗 Hub
+model = SentenceTransformer("model")
+# Run inference
+sentences = [
+ 'Quelles sont les entités qui peuvent bénéficier des aides régionales pour le développement de projets de méthanisation?',
+ 'Bénéficiaires: Professionnel - Agriculture et alimentation, Professionnel - TPE < 10, Professionnel - PME < 250, Professionnel - ETI < 5000, Collectivité ou institution - Autre (GIP, copropriété, EPA...), Collectivité ou institution - Bailleurs sociaux, Collectivité ou institution - Communes de 10 000 à 20 000 hab, Collectivité ou institution - Communes de 2000 à 10 000 hab, Collectivité ou institution - Communes de < 2000 hab, Collectivité ou institution - Communes de > 20 000 hab, Collectivité ou institution - Département, Collectivité ou institution - EPCI, Collectivité ou institution - EPT / Métropole du Grand Paris, Collectivité ou institution - Office de tourisme intercommunal',
+ "Nature de l'aide: L’aide prend la forme d’une subvention en investissement. La région peut intervenir jusqu’à 70% de votre budget d’investissement, dans la limite de 50 000€ de dépenses éligibles",
+]
+embeddings = model.encode(sentences)
+print(embeddings.shape)
+# [3, 768]
+
+# Get the similarity scores for the embeddings
+similarities = model.similarity(embeddings, embeddings)
+print(similarities.shape)
+# [3, 3]
+```
+
+
+
+
+
+
+
+## Evaluation
+
+### Metrics
+
+#### Semantic Similarity
+
+* Dataset: `EmbeddingSimEval`
+* Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
+
+| Metric | Value |
+|:--------------------|:--------|
+| pearson_cosine | nan |
+| **spearman_cosine** | **nan** |
+
+#### Binary Classification
+
+* Dataset: `BinaryClassifEval`
+* Evaluated with [BinaryClassificationEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
+
+| Metric | Value |
+|:--------------------------|:--------|
+| cosine_accuracy | 0.9985 |
+| cosine_accuracy_threshold | -0.1893 |
+| cosine_f1 | 0.9993 |
+| cosine_f1_threshold | -0.1893 |
+| cosine_precision | 1.0 |
+| cosine_recall | 0.9985 |
+| **cosine_ap** | **1.0** |
+| cosine_mcc | 0.0 |
+
+
+
+
+
+## Training Details
+
+### Training Dataset
+
+#### json
+
+* Dataset: json
+* Size: 3,696 training samples
+* Columns: sentence1, sentence2, and label
+* Approximate statistics based on the first 1000 samples:
+ | | sentence1 | sentence2 | label |
+ |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------|
+ | type | string | string | int |
+ | details |
- min: 17 tokens
- mean: 41.01 tokens
- max: 122 tokens
| - min: 7 tokens
- mean: 75.87 tokens
- max: 351 tokens
| |
+* Samples:
+ | sentence1 | sentence2 | label |
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
+ | Quelle proportion des dépenses pour l'installation de bornes de recharge électrique peut être couverte par la région Île-de-France? | Nature de l'aide: La Région participera à hauteur de 50% de la dépense supportée par le maître d’ouvrage plafonnée en fonction du type de bornes | 1 |
+ | Quels types de projets sont éligibles pour obtenir un financement de la Région Île-de-France dans le cadre du développement de l'électromobilité? | Type de project: Le dispositif a pour objet le financement : Des études d’élaboration d’un document stratégique,De l’installation ou la mise à niveau des IRVE situées sur le domaine public francilien, respectant les critères du label régional et s’inscrivant dans un plan d’actions | 1 |
+ | Quelle est la démarche à suivre pour déposer une demande de subvention concernant l'électromobilité en Île-de-France? | Procédures et démarches: Déposez sur mesdemarches.iledefrance.fr votre dossier de demande de subvention présentant le projet de manière précise et comportant toutes les pièces permettant l’instruction du dossier, réputé complet, par les services de la Région | 1 |
+* Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
+ ```json
+ {
+ "scale": 20.0,
+ "similarity_fct": "cos_sim"
+ }
+ ```
+
+### Evaluation Dataset
+
+#### json
+
+* Dataset: json
+* Size: 687 evaluation samples
+* Columns: sentence1, sentence2, and label
+* Approximate statistics based on the first 687 samples:
+ | | sentence1 | sentence2 | label |
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------|
+ | type | string | string | int |
+ | details | - min: 7 tokens
- mean: 36.24 tokens
- max: 71 tokens
| - min: 14 tokens
- mean: 84.63 tokens
- max: 300 tokens
| |
+* Samples:
+ | sentence1 | sentence2 | label |
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
+ | Sous quelles conditions mon centre de formation en apprentissage peut-il être éligible à une subvention pour des investissements? | Le dispositif est accessible à tous les OFA sous réserve de remplir les 5 conditions suivantes : Dispenser une activité apprentissage ayant obtenu une certification,Dispenser des formations en apprentissage sur le territoire francilien depuis au moins 1 an en qualité de CFA, d’OFA ou d’UFA,Présenter un projet d’investissement prévu pour la dispense de formations en apprentissage sur le territoire francilien,Être propriétaire du bien pour lequel une subvention est sollicitée ou titulaire d’un bail récemment renouvelé (ou engagement du propriétaire à renouveler le bail), en propre ou sous la forme de SCI, et assurant la maîtrise d’ouvrage des travaux d’investissement,Présenter un besoin de financement sur le projet d’investissement ne pouvant être pris en charge au titre des fonds propres de la structure et de tiers financeurs | 1 |
+ | Est-ce que ma structure qui dispense des formations en apprentissage doit avoir une certaine ancienneté pour bénéficier de l'aide régionale? | Dispenser des formations en apprentissage sur le territoire francilien depuis au moins 1 an en qualité de CFA, d’OFA ou d’UFA | 1 |
+ | Comment dois-je procéder pour soumettre ma demande de soutien à l'investissement pour mon organisme de formation? | L'organisme doit déposer sa demande et les pièces justificatives via le portail mesdemarches.iledefrance.fr | 1 |
+* Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
+ ```json
+ {
+ "scale": 20.0,
+ "similarity_fct": "cos_sim"
+ }
+ ```
+
+### Training Hyperparameters
+#### Non-Default Hyperparameters
+
+- `eval_strategy`: epoch
+- `per_device_train_batch_size`: 2
+- `per_device_eval_batch_size`: 2
+- `num_train_epochs`: 10
+- `lr_scheduler_type`: cosine
+- `warmup_ratio`: 0.1
+- `bf16`: True
+- `tf32`: True
+- `load_best_model_at_end`: True
+- `optim`: adamw_torch_fused
+- `batch_sampler`: no_duplicates
+
+#### All Hyperparameters
+Click to expand
+
+- `overwrite_output_dir`: False
+- `do_predict`: False
+- `eval_strategy`: epoch
+- `prediction_loss_only`: True
+- `per_device_train_batch_size`: 2
+- `per_device_eval_batch_size`: 2
+- `per_gpu_train_batch_size`: None
+- `per_gpu_eval_batch_size`: None
+- `gradient_accumulation_steps`: 1
+- `eval_accumulation_steps`: None
+- `torch_empty_cache_steps`: None
+- `learning_rate`: 5e-05
+- `weight_decay`: 0.0
+- `adam_beta1`: 0.9
+- `adam_beta2`: 0.999
+- `adam_epsilon`: 1e-08
+- `max_grad_norm`: 1.0
+- `num_train_epochs`: 10
+- `max_steps`: -1
+- `lr_scheduler_type`: cosine
+- `lr_scheduler_kwargs`: {}
+- `warmup_ratio`: 0.1
+- `warmup_steps`: 0
+- `log_level`: passive
+- `log_level_replica`: warning
+- `log_on_each_node`: True
+- `logging_nan_inf_filter`: True
+- `save_safetensors`: True
+- `save_on_each_node`: False
+- `save_only_model`: False
+- `restore_callback_states_from_checkpoint`: False
+- `no_cuda`: False
+- `use_cpu`: False
+- `use_mps_device`: False
+- `seed`: 42
+- `data_seed`: None
+- `jit_mode_eval`: False
+- `use_ipex`: False
+- `bf16`: True
+- `fp16`: False
+- `fp16_opt_level`: O1
+- `half_precision_backend`: auto
+- `bf16_full_eval`: False
+- `fp16_full_eval`: False
+- `tf32`: True
+- `local_rank`: 0
+- `ddp_backend`: None
+- `tpu_num_cores`: None
+- `tpu_metrics_debug`: False
+- `debug`: []
+- `dataloader_drop_last`: False
+- `dataloader_num_workers`: 0
+- `dataloader_prefetch_factor`: None
+- `past_index`: -1
+- `disable_tqdm`: False
+- `remove_unused_columns`: True
+- `label_names`: None
+- `load_best_model_at_end`: True
+- `ignore_data_skip`: False
+- `fsdp`: []
+- `fsdp_min_num_params`: 0
+- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
+- `fsdp_transformer_layer_cls_to_wrap`: None
+- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
+- `deepspeed`: None
+- `label_smoothing_factor`: 0.0
+- `optim`: adamw_torch_fused
+- `optim_args`: None
+- `adafactor`: False
+- `group_by_length`: False
+- `length_column_name`: length
+- `ddp_find_unused_parameters`: None
+- `ddp_bucket_cap_mb`: None
+- `ddp_broadcast_buffers`: False
+- `dataloader_pin_memory`: True
+- `dataloader_persistent_workers`: False
+- `skip_memory_metrics`: True
+- `use_legacy_prediction_loop`: False
+- `push_to_hub`: False
+- `resume_from_checkpoint`: None
+- `hub_model_id`: None
+- `hub_strategy`: every_save
+- `hub_private_repo`: None
+- `hub_always_push`: False
+- `gradient_checkpointing`: False
+- `gradient_checkpointing_kwargs`: None
+- `include_inputs_for_metrics`: False
+- `include_for_metrics`: []
+- `eval_do_concat_batches`: True
+- `fp16_backend`: auto
+- `push_to_hub_model_id`: None
+- `push_to_hub_organization`: None
+- `mp_parameters`:
+- `auto_find_batch_size`: False
+- `full_determinism`: False
+- `torchdynamo`: None
+- `ray_scope`: last
+- `ddp_timeout`: 1800
+- `torch_compile`: False
+- `torch_compile_backend`: None
+- `torch_compile_mode`: None
+- `dispatch_batches`: None
+- `split_batches`: None
+- `include_tokens_per_second`: False
+- `include_num_input_tokens_seen`: False
+- `neftune_noise_alpha`: None
+- `optim_target_modules`: None
+- `batch_eval_metrics`: False
+- `eval_on_start`: False
+- `use_liger_kernel`: False
+- `eval_use_gather_object`: False
+- `average_tokens_across_devices`: False
+- `prompts`: None
+- `batch_sampler`: no_duplicates
+- `multi_dataset_batch_sampler`: proportional
+
+
+
+### Training Logs
+Click to expand
+
+| Epoch | Step | Training Loss | Validation Loss | EmbeddingSimEval_spearman_cosine | BinaryClassifEval_cosine_ap |
+|:--------:|:---------:|:-------------:|:---------------:|:--------------------------------:|:---------------------------:|
+| 0.0162 | 30 | 0.5038 | - | - | - |
+| 0.0325 | 60 | 0.3814 | - | - | - |
+| 0.0487 | 90 | 0.402 | - | - | - |
+| 0.0649 | 120 | 0.3383 | - | - | - |
+| 0.0812 | 150 | 0.3522 | - | - | - |
+| 0.0974 | 180 | 0.2221 | - | - | - |
+| 0.1136 | 210 | 0.229 | - | - | - |
+| 0.1299 | 240 | 0.3599 | - | - | - |
+| 0.1461 | 270 | 0.1996 | - | - | - |
+| 0.1623 | 300 | 0.1783 | - | - | - |
+| 0.1786 | 330 | 0.2351 | - | - | - |
+| 0.1948 | 360 | 0.3665 | - | - | - |
+| 0.2110 | 390 | 0.3452 | - | - | - |
+| 0.2273 | 420 | 0.2816 | - | - | - |
+| 0.2435 | 450 | 0.1036 | - | - | - |
+| 0.2597 | 480 | 0.1652 | - | - | - |
+| 0.2760 | 510 | 0.2506 | - | - | - |
+| 0.2922 | 540 | 0.1143 | - | - | - |
+| 0.3084 | 570 | 0.3336 | - | - | - |
+| 0.3247 | 600 | 0.2191 | - | - | - |
+| 0.3409 | 630 | 0.1389 | - | - | - |
+| 0.3571 | 660 | 0.2102 | - | - | - |
+| 0.3734 | 690 | 0.2241 | - | - | - |
+| 0.3896 | 720 | 0.3876 | - | - | - |
+| 0.4058 | 750 | 0.1398 | - | - | - |
+| 0.4221 | 780 | 0.2608 | - | - | - |
+| 0.4383 | 810 | 0.1452 | - | - | - |
+| 0.4545 | 840 | 0.1657 | - | - | - |
+| 0.4708 | 870 | 0.2874 | - | - | - |
+| 0.4870 | 900 | 0.109 | - | - | - |
+| 0.5032 | 930 | 0.0496 | - | - | - |
+| 0.5195 | 960 | 0.1891 | - | - | - |
+| 0.5357 | 990 | 0.1593 | - | - | - |
+| 0.5519 | 1020 | 0.2214 | - | - | - |
+| 0.5682 | 1050 | 0.2378 | - | - | - |
+| 0.5844 | 1080 | 0.0371 | - | - | - |
+| 0.6006 | 1110 | 0.259 | - | - | - |
+| 0.6169 | 1140 | 0.0274 | - | - | - |
+| 0.6331 | 1170 | 0.1845 | - | - | - |
+| 0.6494 | 1200 | 0.1336 | - | - | - |
+| 0.6656 | 1230 | 0.2105 | - | - | - |
+| 0.6818 | 1260 | 0.1523 | - | - | - |
+| 0.6981 | 1290 | 0.1659 | - | - | - |
+| 0.7143 | 1320 | 0.0471 | - | - | - |
+| 0.7305 | 1350 | 0.1287 | - | - | - |
+| 0.7468 | 1380 | 0.0914 | - | - | - |
+| 0.7630 | 1410 | 0.2758 | - | - | - |
+| 0.7792 | 1440 | 0.2832 | - | - | - |
+| 0.7955 | 1470 | 0.1038 | - | - | - |
+| 0.8117 | 1500 | 0.1366 | - | - | - |
+| 0.8279 | 1530 | 0.099 | - | - | - |
+| 0.8442 | 1560 | 0.0792 | - | - | - |
+| 0.8604 | 1590 | 0.1524 | - | - | - |
+| 0.8766 | 1620 | 0.1274 | - | - | - |
+| 0.8929 | 1650 | 0.0823 | - | - | - |
+| 0.9091 | 1680 | 0.1655 | - | - | - |
+| 0.9253 | 1710 | 0.1787 | - | - | - |
+| 0.9416 | 1740 | 0.2989 | - | - | - |
+| 0.9578 | 1770 | 0.0582 | - | - | - |
+| 0.9740 | 1800 | 0.1014 | - | - | - |
+| 0.9903 | 1830 | 0.1914 | - | - | - |
+| 1.0 | 1848 | - | 0.4260 | nan | 1.0 |
+| 1.0065 | 1860 | 0.0918 | - | - | - |
+| 1.0227 | 1890 | 0.141 | - | - | - |
+| 1.0390 | 1920 | 0.084 | - | - | - |
+| 1.0552 | 1950 | 0.1602 | - | - | - |
+| 1.0714 | 1980 | 0.2547 | - | - | - |
+| 1.0877 | 2010 | 0.155 | - | - | - |
+| 1.1039 | 2040 | 0.0279 | - | - | - |
+| 1.1201 | 2070 | 0.0571 | - | - | - |
+| 1.1364 | 2100 | 0.253 | - | - | - |
+| 1.1526 | 2130 | 0.0418 | - | - | - |
+| 1.1688 | 2160 | 0.3989 | - | - | - |
+| 1.1851 | 2190 | 0.3349 | - | - | - |
+| 1.2013 | 2220 | 0.0723 | - | - | - |
+| 1.2175 | 2250 | 0.0844 | - | - | - |
+| 1.2338 | 2280 | 0.2263 | - | - | - |
+| 1.25 | 2310 | 0.2433 | - | - | - |
+| 1.2662 | 2340 | 0.136 | - | - | - |
+| 1.2825 | 2370 | 0.0653 | - | - | - |
+| 1.2987 | 2400 | 0.2757 | - | - | - |
+| 1.3149 | 2430 | 0.1321 | - | - | - |
+| 1.3312 | 2460 | 0.2024 | - | - | - |
+| 1.3474 | 2490 | 0.3687 | - | - | - |
+| 1.3636 | 2520 | 0.0729 | - | - | - |
+| 1.3799 | 2550 | 0.1594 | - | - | - |
+| 1.3961 | 2580 | 0.1276 | - | - | - |
+| 1.4123 | 2610 | 0.1744 | - | - | - |
+| 1.4286 | 2640 | 0.2368 | - | - | - |
+| 1.4448 | 2670 | 0.0535 | - | - | - |
+| 1.4610 | 2700 | 0.0147 | - | - | - |
+| 1.4773 | 2730 | 0.125 | - | - | - |
+| 1.4935 | 2760 | 0.1622 | - | - | - |
+| 1.5097 | 2790 | 0.0245 | - | - | - |
+| 1.5260 | 2820 | 0.0637 | - | - | - |
+| 1.5422 | 2850 | 0.2123 | - | - | - |
+| 1.5584 | 2880 | 0.0821 | - | - | - |
+| 1.5747 | 2910 | 0.3138 | - | - | - |
+| 1.5909 | 2940 | 0.1091 | - | - | - |
+| 1.6071 | 2970 | 0.0611 | - | - | - |
+| 1.6234 | 3000 | 0.0564 | - | - | - |
+| 1.6396 | 3030 | 0.0578 | - | - | - |
+| 1.6558 | 3060 | 0.1539 | - | - | - |
+| 1.6721 | 3090 | 0.2868 | - | - | - |
+| 1.6883 | 3120 | 0.0766 | - | - | - |
+| 1.7045 | 3150 | 0.5037 | - | - | - |
+| 1.7208 | 3180 | 0.1103 | - | - | - |
+| 1.7370 | 3210 | 0.3235 | - | - | - |
+| 1.7532 | 3240 | 0.0225 | - | - | - |
+| 1.7695 | 3270 | 0.098 | - | - | - |
+| 1.7857 | 3300 | 0.1235 | - | - | - |
+| 1.8019 | 3330 | 0.0932 | - | - | - |
+| 1.8182 | 3360 | 0.0556 | - | - | - |
+| 1.8344 | 3390 | 0.0265 | - | - | - |
+| 1.8506 | 3420 | 0.0873 | - | - | - |
+| 1.8669 | 3450 | 0.0791 | - | - | - |
+| 1.8831 | 3480 | 0.0347 | - | - | - |
+| 1.8994 | 3510 | 0.0641 | - | - | - |
+| 1.9156 | 3540 | 0.292 | - | - | - |
+| 1.9318 | 3570 | 0.0623 | - | - | - |
+| 1.9481 | 3600 | 0.1976 | - | - | - |
+| 1.9643 | 3630 | 0.0519 | - | - | - |
+| 1.9805 | 3660 | 0.1408 | - | - | - |
+| 1.9968 | 3690 | 0.1055 | - | - | - |
+| 2.0 | 3696 | - | 0.3302 | nan | 1.0 |
+| 2.0130 | 3720 | 0.0886 | - | - | - |
+| 2.0292 | 3750 | 0.132 | - | - | - |
+| 2.0455 | 3780 | 0.0434 | - | - | - |
+| 2.0617 | 3810 | 0.0119 | - | - | - |
+| 2.0779 | 3840 | 0.0262 | - | - | - |
+| 2.0942 | 3870 | 0.313 | - | - | - |
+| 2.1104 | 3900 | 0.0508 | - | - | - |
+| 2.1266 | 3930 | 0.1431 | - | - | - |
+| 2.1429 | 3960 | 0.1633 | - | - | - |
+| 2.1591 | 3990 | 0.0477 | - | - | - |
+| 2.1753 | 4020 | 0.0563 | - | - | - |
+| 2.1916 | 4050 | 0.0336 | - | - | - |
+| 2.2078 | 4080 | 0.1956 | - | - | - |
+| 2.2240 | 4110 | 0.0948 | - | - | - |
+| 2.2403 | 4140 | 0.1459 | - | - | - |
+| 2.2565 | 4170 | 0.0875 | - | - | - |
+| 2.2727 | 4200 | 0.0571 | - | - | - |
+| 2.2890 | 4230 | 0.0325 | - | - | - |
+| 2.3052 | 4260 | 0.1129 | - | - | - |
+| 2.3214 | 4290 | 0.0622 | - | - | - |
+| 2.3377 | 4320 | 0.3172 | - | - | - |
+| 2.3539 | 4350 | 0.0895 | - | - | - |
+| 2.3701 | 4380 | 0.0803 | - | - | - |
+| 2.3864 | 4410 | 0.0828 | - | - | - |
+| 2.4026 | 4440 | 0.0956 | - | - | - |
+| 2.4188 | 4470 | 0.0322 | - | - | - |
+| 2.4351 | 4500 | 0.0299 | - | - | - |
+| 2.4513 | 4530 | 0.0492 | - | - | - |
+| 2.4675 | 4560 | 0.0405 | - | - | - |
+| 2.4838 | 4590 | 0.012 | - | - | - |
+| 2.5 | 4620 | 0.2303 | - | - | - |
+| 2.5162 | 4650 | 0.0517 | - | - | - |
+| 2.5325 | 4680 | 0.1509 | - | - | - |
+| 2.5487 | 4710 | 0.0284 | - | - | - |
+| 2.5649 | 4740 | 0.1273 | - | - | - |
+| 2.5812 | 4770 | 0.0073 | - | - | - |
+| 2.5974 | 4800 | 0.0083 | - | - | - |
+| 2.6136 | 4830 | 0.0971 | - | - | - |
+| 2.6299 | 4860 | 0.0091 | - | - | - |
+| 2.6461 | 4890 | 0.0512 | - | - | - |
+| 2.6623 | 4920 | 0.0561 | - | - | - |
+| 2.6786 | 4950 | 0.0012 | - | - | - |
+| 2.6948 | 4980 | 0.0152 | - | - | - |
+| 2.7110 | 5010 | 0.0201 | - | - | - |
+| 2.7273 | 5040 | 0.0819 | - | - | - |
+| 2.7435 | 5070 | 0.0547 | - | - | - |
+| 2.7597 | 5100 | 0.0511 | - | - | - |
+| 2.7760 | 5130 | 0.1691 | - | - | - |
+| 2.7922 | 5160 | 0.2579 | - | - | - |
+| 2.8084 | 5190 | 0.0846 | - | - | - |
+| 2.8247 | 5220 | 0.2551 | - | - | - |
+| 2.8409 | 5250 | 0.2625 | - | - | - |
+| 2.8571 | 5280 | 0.1047 | - | - | - |
+| 2.8734 | 5310 | 0.0032 | - | - | - |
+| 2.8896 | 5340 | 0.0967 | - | - | - |
+| 2.9058 | 5370 | 0.1057 | - | - | - |
+| 2.9221 | 5400 | 0.0312 | - | - | - |
+| 2.9383 | 5430 | 0.0237 | - | - | - |
+| 2.9545 | 5460 | 0.091 | - | - | - |
+| 2.9708 | 5490 | 0.1478 | - | - | - |
+| 2.9870 | 5520 | 0.0304 | - | - | - |
+| 3.0 | 5544 | - | 0.3124 | nan | 1.0 |
+| 3.0032 | 5550 | 0.103 | - | - | - |
+| 3.0195 | 5580 | 0.0283 | - | - | - |
+| 3.0357 | 5610 | 0.1117 | - | - | - |
+| 3.0519 | 5640 | 0.0611 | - | - | - |
+| 3.0682 | 5670 | 0.0086 | - | - | - |
+| 3.0844 | 5700 | 0.0684 | - | - | - |
+| 3.1006 | 5730 | 0.021 | - | - | - |
+| 3.1169 | 5760 | 0.0049 | - | - | - |
+| 3.1331 | 5790 | 0.0192 | - | - | - |
+| 3.1494 | 5820 | 0.0641 | - | - | - |
+| 3.1656 | 5850 | 0.0049 | - | - | - |
+| 3.1818 | 5880 | 0.0505 | - | - | - |
+| 3.1981 | 5910 | 0.1081 | - | - | - |
+| 3.2143 | 5940 | 0.0899 | - | - | - |
+| 3.2305 | 5970 | 0.0353 | - | - | - |
+| 3.2468 | 6000 | 0.023 | - | - | - |
+| 3.2630 | 6030 | 0.063 | - | - | - |
+| 3.2792 | 6060 | 0.0098 | - | - | - |
+| 3.2955 | 6090 | 0.0616 | - | - | - |
+| 3.3117 | 6120 | 0.043 | - | - | - |
+| 3.3279 | 6150 | 0.1065 | - | - | - |
+| 3.3442 | 6180 | 0.0261 | - | - | - |
+| 3.3604 | 6210 | 0.0237 | - | - | - |
+| 3.3766 | 6240 | 0.0102 | - | - | - |
+| 3.3929 | 6270 | 0.1165 | - | - | - |
+| 3.4091 | 6300 | 0.0264 | - | - | - |
+| 3.4253 | 6330 | 0.0046 | - | - | - |
+| 3.4416 | 6360 | 0.0396 | - | - | - |
+| 3.4578 | 6390 | 0.0396 | - | - | - |
+| 3.4740 | 6420 | 0.0272 | - | - | - |
+| 3.4903 | 6450 | 0.0351 | - | - | - |
+| 3.5065 | 6480 | 0.052 | - | - | - |
+| 3.5227 | 6510 | 0.0758 | - | - | - |
+| 3.5390 | 6540 | 0.0267 | - | - | - |
+| 3.5552 | 6570 | 0.1482 | - | - | - |
+| 3.5714 | 6600 | 0.0072 | - | - | - |
+| 3.5877 | 6630 | 0.0067 | - | - | - |
+| 3.6039 | 6660 | 0.0061 | - | - | - |
+| 3.6201 | 6690 | 0.1876 | - | - | - |
+| 3.6364 | 6720 | 0.0073 | - | - | - |
+| 3.6526 | 6750 | 0.0734 | - | - | - |
+| 3.6688 | 6780 | 0.0485 | - | - | - |
+| 3.6851 | 6810 | 0.0392 | - | - | - |
+| 3.7013 | 6840 | 0.1201 | - | - | - |
+| 3.7175 | 6870 | 0.023 | - | - | - |
+| 3.7338 | 6900 | 0.0356 | - | - | - |
+| 3.75 | 6930 | 0.0051 | - | - | - |
+| 3.7662 | 6960 | 0.032 | - | - | - |
+| 3.7825 | 6990 | 0.0052 | - | - | - |
+| 3.7987 | 7020 | 0.0128 | - | - | - |
+| 3.8149 | 7050 | 0.0331 | - | - | - |
+| 3.8312 | 7080 | 0.0121 | - | - | - |
+| 3.8474 | 7110 | 0.0535 | - | - | - |
+| 3.8636 | 7140 | 0.0113 | - | - | - |
+| 3.8799 | 7170 | 0.0124 | - | - | - |
+| 3.8961 | 7200 | 0.012 | - | - | - |
+| 3.9123 | 7230 | 0.0029 | - | - | - |
+| 3.9286 | 7260 | 0.1589 | - | - | - |
+| 3.9448 | 7290 | 0.0582 | - | - | - |
+| 3.9610 | 7320 | 0.0423 | - | - | - |
+| 3.9773 | 7350 | 0.015 | - | - | - |
+| 3.9935 | 7380 | 0.1042 | - | - | - |
+| 4.0 | 7392 | - | 0.3149 | nan | 1.0 |
+| 4.0097 | 7410 | 0.01 | - | - | - |
+| 4.0260 | 7440 | 0.0069 | - | - | - |
+| 4.0422 | 7470 | 0.0107 | - | - | - |
+| 4.0584 | 7500 | 0.0167 | - | - | - |
+| 4.0747 | 7530 | 0.1177 | - | - | - |
+| 4.0909 | 7560 | 0.0679 | - | - | - |
+| 4.1071 | 7590 | 0.0484 | - | - | - |
+| 4.1234 | 7620 | 0.0251 | - | - | - |
+| 4.1396 | 7650 | 0.0272 | - | - | - |
+| 4.1558 | 7680 | 0.0688 | - | - | - |
+| 4.1721 | 7710 | 0.0192 | - | - | - |
+| 4.1883 | 7740 | 0.0321 | - | - | - |
+| 4.2045 | 7770 | 0.0043 | - | - | - |
+| 4.2208 | 7800 | 0.0882 | - | - | - |
+| 4.2370 | 7830 | 0.0074 | - | - | - |
+| 4.2532 | 7860 | 0.0214 | - | - | - |
+| 4.2695 | 7890 | 0.0003 | - | - | - |
+| 4.2857 | 7920 | 0.0128 | - | - | - |
+| 4.3019 | 7950 | 0.0063 | - | - | - |
+| 4.3182 | 7980 | 0.0342 | - | - | - |
+| 4.3344 | 8010 | 0.0099 | - | - | - |
+| 4.3506 | 8040 | 0.0574 | - | - | - |
+| 4.3669 | 8070 | 0.1595 | - | - | - |
+| 4.3831 | 8100 | 0.0028 | - | - | - |
+| 4.3994 | 8130 | 0.0051 | - | - | - |
+| 4.4156 | 8160 | 0.0029 | - | - | - |
+| 4.4318 | 8190 | 0.0085 | - | - | - |
+| 4.4481 | 8220 | 0.0154 | - | - | - |
+| 4.4643 | 8250 | 0.0063 | - | - | - |
+| 4.4805 | 8280 | 0.0222 | - | - | - |
+| 4.4968 | 8310 | 0.0083 | - | - | - |
+| 4.5130 | 8340 | 0.0527 | - | - | - |
+| 4.5292 | 8370 | 0.0489 | - | - | - |
+| 4.5455 | 8400 | 0.0888 | - | - | - |
+| 4.5617 | 8430 | 0.0312 | - | - | - |
+| 4.5779 | 8460 | 0.0961 | - | - | - |
+| 4.5942 | 8490 | 0.0528 | - | - | - |
+| 4.6104 | 8520 | 0.0039 | - | - | - |
+| 4.6266 | 8550 | 0.0073 | - | - | - |
+| 4.6429 | 8580 | 0.0613 | - | - | - |
+| 4.6591 | 8610 | 0.0214 | - | - | - |
+| 4.6753 | 8640 | 0.0113 | - | - | - |
+| 4.6916 | 8670 | 0.0105 | - | - | - |
+| 4.7078 | 8700 | 0.0014 | - | - | - |
+| 4.7240 | 8730 | 0.0054 | - | - | - |
+| 4.7403 | 8760 | 0.0094 | - | - | - |
+| 4.7565 | 8790 | 0.0263 | - | - | - |
+| 4.7727 | 8820 | 0.0497 | - | - | - |
+| 4.7890 | 8850 | 0.0441 | - | - | - |
+| 4.8052 | 8880 | 0.1178 | - | - | - |
+| 4.8214 | 8910 | 0.0019 | - | - | - |
+| 4.8377 | 8940 | 0.073 | - | - | - |
+| 4.8539 | 8970 | 0.0273 | - | - | - |
+| 4.8701 | 9000 | 0.0167 | - | - | - |
+| 4.8864 | 9030 | 0.0017 | - | - | - |
+| 4.9026 | 9060 | 0.0198 | - | - | - |
+| 4.9188 | 9090 | 0.0249 | - | - | - |
+| 4.9351 | 9120 | 0.0326 | - | - | - |
+| 4.9513 | 9150 | 0.0326 | - | - | - |
+| 4.9675 | 9180 | 0.0013 | - | - | - |
+| 4.9838 | 9210 | 0.0039 | - | - | - |
+| 5.0 | 9240 | 0.0501 | 0.2695 | nan | 1.0 |
+| 5.0162 | 9270 | 0.011 | - | - | - |
+| 5.0325 | 9300 | 0.0203 | - | - | - |
+| 5.0487 | 9330 | 0.0349 | - | - | - |
+| 5.0649 | 9360 | 0.0287 | - | - | - |
+| 5.0812 | 9390 | 0.0085 | - | - | - |
+| 5.0974 | 9420 | 0.0329 | - | - | - |
+| 5.1136 | 9450 | 0.0006 | - | - | - |
+| 5.1299 | 9480 | 0.1229 | - | - | - |
+| 5.1461 | 9510 | 0.0097 | - | - | - |
+| 5.1623 | 9540 | 0.0596 | - | - | - |
+| 5.1786 | 9570 | 0.0273 | - | - | - |
+| 5.1948 | 9600 | 0.0043 | - | - | - |
+| 5.2110 | 9630 | 0.0173 | - | - | - |
+| 5.2273 | 9660 | 0.0052 | - | - | - |
+| 5.2435 | 9690 | 0.0013 | - | - | - |
+| 5.2597 | 9720 | 0.0501 | - | - | - |
+| 5.2760 | 9750 | 0.0188 | - | - | - |
+| 5.2922 | 9780 | 0.002 | - | - | - |
+| 5.3084 | 9810 | 0.0031 | - | - | - |
+| 5.3247 | 9840 | 0.0571 | - | - | - |
+| 5.3409 | 9870 | 0.0128 | - | - | - |
+| 5.3571 | 9900 | 0.0338 | - | - | - |
+| 5.3734 | 9930 | 0.0028 | - | - | - |
+| 5.3896 | 9960 | 0.002 | - | - | - |
+| 5.4058 | 9990 | 0.0261 | - | - | - |
+| 5.4221 | 10020 | 0.0099 | - | - | - |
+| 5.4383 | 10050 | 0.0031 | - | - | - |
+| 5.4545 | 10080 | 0.0331 | - | - | - |
+| 5.4708 | 10110 | 0.0538 | - | - | - |
+| 5.4870 | 10140 | 0.0006 | - | - | - |
+| 5.5032 | 10170 | 0.0364 | - | - | - |
+| 5.5195 | 10200 | 0.0508 | - | - | - |
+| 5.5357 | 10230 | 0.0966 | - | - | - |
+| 5.5519 | 10260 | 0.0036 | - | - | - |
+| 5.5682 | 10290 | 0.0035 | - | - | - |
+| 5.5844 | 10320 | 0.0016 | - | - | - |
+| 5.6006 | 10350 | 0.0269 | - | - | - |
+| 5.6169 | 10380 | 0.0006 | - | - | - |
+| 5.6331 | 10410 | 0.0179 | - | - | - |
+| 5.6494 | 10440 | 0.0095 | - | - | - |
+| 5.6656 | 10470 | 0.0958 | - | - | - |
+| 5.6818 | 10500 | 0.0121 | - | - | - |
+| 5.6981 | 10530 | 0.0009 | - | - | - |
+| 5.7143 | 10560 | 0.055 | - | - | - |
+| 5.7305 | 10590 | 0.012 | - | - | - |
+| 5.7468 | 10620 | 0.0182 | - | - | - |
+| 5.7630 | 10650 | 0.0002 | - | - | - |
+| 5.7792 | 10680 | 0.0563 | - | - | - |
+| 5.7955 | 10710 | 0.0317 | - | - | - |
+| 5.8117 | 10740 | 0.0083 | - | - | - |
+| 5.8279 | 10770 | 0.0093 | - | - | - |
+| 5.8442 | 10800 | 0.0626 | - | - | - |
+| 5.8604 | 10830 | 0.0266 | - | - | - |
+| 5.8766 | 10860 | 0.0033 | - | - | - |
+| 5.8929 | 10890 | 0.0003 | - | - | - |
+| 5.9091 | 10920 | 0.0025 | - | - | - |
+| 5.9253 | 10950 | 0.008 | - | - | - |
+| 5.9416 | 10980 | 0.0132 | - | - | - |
+| 5.9578 | 11010 | 0.0047 | - | - | - |
+| 5.9740 | 11040 | 0.0292 | - | - | - |
+| 5.9903 | 11070 | 0.0042 | - | - | - |
+| 6.0 | 11088 | - | 0.3194 | nan | 1.0 |
+| 6.0065 | 11100 | 0.0066 | - | - | - |
+| 6.0227 | 11130 | 0.0054 | - | - | - |
+| 6.0390 | 11160 | 0.0007 | - | - | - |
+| 6.0552 | 11190 | 0.0114 | - | - | - |
+| 6.0714 | 11220 | 0.0007 | - | - | - |
+| 6.0877 | 11250 | 0.0214 | - | - | - |
+| 6.1039 | 11280 | 0.0043 | - | - | - |
+| 6.1201 | 11310 | 0.0128 | - | - | - |
+| 6.1364 | 11340 | 0.0119 | - | - | - |
+| 6.1526 | 11370 | 0.0125 | - | - | - |
+| 6.1688 | 11400 | 0.0066 | - | - | - |
+| 6.1851 | 11430 | 0.0005 | - | - | - |
+| 6.2013 | 11460 | 0.0617 | - | - | - |
+| 6.2175 | 11490 | 0.0031 | - | - | - |
+| 6.2338 | 11520 | 0.0008 | - | - | - |
+| 6.25 | 11550 | 0.0261 | - | - | - |
+| 6.2662 | 11580 | 0.0204 | - | - | - |
+| 6.2825 | 11610 | 0.0015 | - | - | - |
+| 6.2987 | 11640 | 0.0002 | - | - | - |
+| 6.3149 | 11670 | 0.0035 | - | - | - |
+| 6.3312 | 11700 | 0.0046 | - | - | - |
+| 6.3474 | 11730 | 0.0521 | - | - | - |
+| 6.3636 | 11760 | 0.0001 | - | - | - |
+| 6.3799 | 11790 | 0.0023 | - | - | - |
+| 6.3961 | 11820 | 0.0063 | - | - | - |
+| 6.4123 | 11850 | 0.002 | - | - | - |
+| 6.4286 | 11880 | 0.0015 | - | - | - |
+| 6.4448 | 11910 | 0.0166 | - | - | - |
+| 6.4610 | 11940 | 0.0077 | - | - | - |
+| 6.4773 | 11970 | 0.0076 | - | - | - |
+| 6.4935 | 12000 | 0.004 | - | - | - |
+| 6.5097 | 12030 | 0.0785 | - | - | - |
+| 6.5260 | 12060 | 0.0106 | - | - | - |
+| 6.5422 | 12090 | 0.0006 | - | - | - |
+| 6.5584 | 12120 | 0.0273 | - | - | - |
+| 6.5747 | 12150 | 0.0236 | - | - | - |
+| 6.5909 | 12180 | 0.006 | - | - | - |
+| 6.6071 | 12210 | 0.0483 | - | - | - |
+| 6.6234 | 12240 | 0.0095 | - | - | - |
+| 6.6396 | 12270 | 0.0007 | - | - | - |
+| 6.6558 | 12300 | 0.0216 | - | - | - |
+| 6.6721 | 12330 | 0.0623 | - | - | - |
+| 6.6883 | 12360 | 0.0064 | - | - | - |
+| 6.7045 | 12390 | 0.0175 | - | - | - |
+| 6.7208 | 12420 | 0.0093 | - | - | - |
+| 6.7370 | 12450 | 0.0118 | - | - | - |
+| 6.7532 | 12480 | 0.0155 | - | - | - |
+| 6.7695 | 12510 | 0.0004 | - | - | - |
+| 6.7857 | 12540 | 0.0356 | - | - | - |
+| 6.8019 | 12570 | 0.0018 | - | - | - |
+| 6.8182 | 12600 | 0.0092 | - | - | - |
+| 6.8344 | 12630 | 0.0079 | - | - | - |
+| 6.8506 | 12660 | 0.0058 | - | - | - |
+| 6.8669 | 12690 | 0.0089 | - | - | - |
+| 6.8831 | 12720 | 0.0125 | - | - | - |
+| 6.8994 | 12750 | 0.001 | - | - | - |
+| 6.9156 | 12780 | 0.0177 | - | - | - |
+| 6.9318 | 12810 | 0.0076 | - | - | - |
+| 6.9481 | 12840 | 0.0366 | - | - | - |
+| 6.9643 | 12870 | 0.0698 | - | - | - |
+| 6.9805 | 12900 | 0.0275 | - | - | - |
+| 6.9968 | 12930 | 0.0032 | - | - | - |
+| 7.0 | 12936 | - | 0.2245 | nan | 1.0 |
+| 7.0130 | 12960 | 0.0 | - | - | - |
+| 7.0292 | 12990 | 0.0043 | - | - | - |
+| 7.0455 | 13020 | 0.0073 | - | - | - |
+| 7.0617 | 13050 | 0.0012 | - | - | - |
+| 7.0779 | 13080 | 0.0021 | - | - | - |
+| 7.0942 | 13110 | 0.0018 | - | - | - |
+| 7.1104 | 13140 | 0.0 | - | - | - |
+| 7.1266 | 13170 | 0.001 | - | - | - |
+| 7.1429 | 13200 | 0.0006 | - | - | - |
+| 7.1591 | 13230 | 0.0092 | - | - | - |
+| 7.1753 | 13260 | 0.0002 | - | - | - |
+| 7.1916 | 13290 | 0.0148 | - | - | - |
+| 7.2078 | 13320 | 0.0019 | - | - | - |
+| 7.2240 | 13350 | 0.0333 | - | - | - |
+| 7.2403 | 13380 | 0.0011 | - | - | - |
+| 7.2565 | 13410 | 0.0112 | - | - | - |
+| 7.2727 | 13440 | 0.0014 | - | - | - |
+| 7.2890 | 13470 | 0.0215 | - | - | - |
+| 7.3052 | 13500 | 0.0013 | - | - | - |
+| 7.3214 | 13530 | 0.0051 | - | - | - |
+| 7.3377 | 13560 | 0.0013 | - | - | - |
+| 7.3539 | 13590 | 0.0271 | - | - | - |
+| 7.3701 | 13620 | 0.0004 | - | - | - |
+| 7.3864 | 13650 | 0.0029 | - | - | - |
+| 7.4026 | 13680 | 0.0021 | - | - | - |
+| 7.4188 | 13710 | 0.0007 | - | - | - |
+| 7.4351 | 13740 | 0.0027 | - | - | - |
+| 7.4513 | 13770 | 0.0003 | - | - | - |
+| 7.4675 | 13800 | 0.0574 | - | - | - |
+| 7.4838 | 13830 | 0.0002 | - | - | - |
+| 7.5 | 13860 | 0.0363 | - | - | - |
+| 7.5162 | 13890 | 0.0073 | - | - | - |
+| 7.5325 | 13920 | 0.002 | - | - | - |
+| 7.5487 | 13950 | 0.0233 | - | - | - |
+| 7.5649 | 13980 | 0.0098 | - | - | - |
+| 7.5812 | 14010 | 0.0123 | - | - | - |
+| 7.5974 | 14040 | 0.018 | - | - | - |
+| 7.6136 | 14070 | 0.0101 | - | - | - |
+| 7.6299 | 14100 | 0.0108 | - | - | - |
+| 7.6461 | 14130 | 0.0205 | - | - | - |
+| 7.6623 | 14160 | 0.002 | - | - | - |
+| 7.6786 | 14190 | 0.0002 | - | - | - |
+| 7.6948 | 14220 | 0.0002 | - | - | - |
+| 7.7110 | 14250 | 0.0166 | - | - | - |
+| 7.7273 | 14280 | 0.0024 | - | - | - |
+| 7.7435 | 14310 | 0.0001 | - | - | - |
+| 7.7597 | 14340 | 0.0001 | - | - | - |
+| 7.7760 | 14370 | 0.0013 | - | - | - |
+| 7.7922 | 14400 | 0.0063 | - | - | - |
+| 7.8084 | 14430 | 0.014 | - | - | - |
+| 7.8247 | 14460 | 0.0137 | - | - | - |
+| 7.8409 | 14490 | 0.0002 | - | - | - |
+| 7.8571 | 14520 | 0.0001 | - | - | - |
+| 7.8734 | 14550 | 0.0144 | - | - | - |
+| 7.8896 | 14580 | 0.004 | - | - | - |
+| 7.9058 | 14610 | 0.056 | - | - | - |
+| 7.9221 | 14640 | 0.03 | - | - | - |
+| 7.9383 | 14670 | 0.076 | - | - | - |
+| 7.9545 | 14700 | 0.0009 | - | - | - |
+| 7.9708 | 14730 | 0.0017 | - | - | - |
+| 7.9870 | 14760 | 0.0196 | - | - | - |
+| 8.0 | 14784 | - | 0.2271 | nan | 1.0 |
+| 8.0032 | 14790 | 0.0162 | - | - | - |
+| 8.0195 | 14820 | 0.0001 | - | - | - |
+| 8.0357 | 14850 | 0.0081 | - | - | - |
+| 8.0519 | 14880 | 0.001 | - | - | - |
+| 8.0682 | 14910 | 0.0017 | - | - | - |
+| 8.0844 | 14940 | 0.0 | - | - | - |
+| 8.1006 | 14970 | 0.0001 | - | - | - |
+| 8.1169 | 15000 | 0.0083 | - | - | - |
+| 8.1331 | 15030 | 0.0121 | - | - | - |
+| 8.1494 | 15060 | 0.0469 | - | - | - |
+| 8.1656 | 15090 | 0.0003 | - | - | - |
+| 8.1818 | 15120 | 0.0002 | - | - | - |
+| 8.1981 | 15150 | 0.0001 | - | - | - |
+| 8.2143 | 15180 | 0.0004 | - | - | - |
+| 8.2305 | 15210 | 0.039 | - | - | - |
+| 8.2468 | 15240 | 0.0053 | - | - | - |
+| 8.2630 | 15270 | 0.0065 | - | - | - |
+| 8.2792 | 15300 | 0.0002 | - | - | - |
+| 8.2955 | 15330 | 0.0072 | - | - | - |
+| 8.3117 | 15360 | 0.0046 | - | - | - |
+| 8.3279 | 15390 | 0.0001 | - | - | - |
+| 8.3442 | 15420 | 0.0001 | - | - | - |
+| 8.3604 | 15450 | 0.0451 | - | - | - |
+| 8.3766 | 15480 | 0.015 | - | - | - |
+| 8.3929 | 15510 | 0.0009 | - | - | - |
+| 8.4091 | 15540 | 0.0185 | - | - | - |
+| 8.4253 | 15570 | 0.0018 | - | - | - |
+| 8.4416 | 15600 | 0.018 | - | - | - |
+| 8.4578 | 15630 | 0.0055 | - | - | - |
+| 8.4740 | 15660 | 0.0011 | - | - | - |
+| 8.4903 | 15690 | 0.0 | - | - | - |
+| 8.5065 | 15720 | 0.0002 | - | - | - |
+| 8.5227 | 15750 | 0.0151 | - | - | - |
+| 8.5390 | 15780 | 0.0151 | - | - | - |
+| 8.5552 | 15810 | 0.0019 | - | - | - |
+| 8.5714 | 15840 | 0.0 | - | - | - |
+| 8.5877 | 15870 | 0.0002 | - | - | - |
+| 8.6039 | 15900 | 0.0 | - | - | - |
+| 8.6201 | 15930 | 0.0272 | - | - | - |
+| 8.6364 | 15960 | 0.0004 | - | - | - |
+| 8.6526 | 15990 | 0.0 | - | - | - |
+| 8.6688 | 16020 | 0.0057 | - | - | - |
+| 8.6851 | 16050 | 0.0003 | - | - | - |
+| 8.7013 | 16080 | 0.0268 | - | - | - |
+| 8.7175 | 16110 | 0.0007 | - | - | - |
+| 8.7338 | 16140 | 0.1138 | - | - | - |
+| 8.75 | 16170 | 0.0001 | - | - | - |
+| 8.7662 | 16200 | 0.0002 | - | - | - |
+| 8.7825 | 16230 | 0.0008 | - | - | - |
+| 8.7987 | 16260 | 0.0003 | - | - | - |
+| 8.8149 | 16290 | 0.0002 | - | - | - |
+| 8.8312 | 16320 | 0.0281 | - | - | - |
+| 8.8474 | 16350 | 0.0056 | - | - | - |
+| 8.8636 | 16380 | 0.0002 | - | - | - |
+| 8.8799 | 16410 | 0.0004 | - | - | - |
+| 8.8961 | 16440 | 0.0003 | - | - | - |
+| 8.9123 | 16470 | 0.0001 | - | - | - |
+| 8.9286 | 16500 | 0.0001 | - | - | - |
+| 8.9448 | 16530 | 0.0 | - | - | - |
+| 8.9610 | 16560 | 0.0 | - | - | - |
+| 8.9773 | 16590 | 0.0009 | - | - | - |
+| 8.9935 | 16620 | 0.0011 | - | - | - |
+| 9.0 | 16632 | - | 0.2189 | nan | 1.0 |
+| 9.0097 | 16650 | 0.0 | - | - | - |
+| 9.0260 | 16680 | 0.0011 | - | - | - |
+| 9.0422 | 16710 | 0.0017 | - | - | - |
+| 9.0584 | 16740 | 0.0205 | - | - | - |
+| 9.0747 | 16770 | 0.0143 | - | - | - |
+| 9.0909 | 16800 | 0.0005 | - | - | - |
+| 9.1071 | 16830 | 0.0001 | - | - | - |
+| 9.1234 | 16860 | 0.0112 | - | - | - |
+| 9.1396 | 16890 | 0.0 | - | - | - |
+| 9.1558 | 16920 | 0.0001 | - | - | - |
+| 9.1721 | 16950 | 0.0003 | - | - | - |
+| 9.1883 | 16980 | 0.0237 | - | - | - |
+| 9.2045 | 17010 | 0.0002 | - | - | - |
+| 9.2208 | 17040 | 0.0018 | - | - | - |
+| 9.2370 | 17070 | 0.0018 | - | - | - |
+| 9.2532 | 17100 | 0.0125 | - | - | - |
+| 9.2695 | 17130 | 0.0001 | - | - | - |
+| 9.2857 | 17160 | 0.0016 | - | - | - |
+| 9.3019 | 17190 | 0.0024 | - | - | - |
+| 9.3182 | 17220 | 0.0268 | - | - | - |
+| 9.3344 | 17250 | 0.0011 | - | - | - |
+| 9.3506 | 17280 | 0.0002 | - | - | - |
+| 9.3669 | 17310 | 0.0018 | - | - | - |
+| 9.3831 | 17340 | 0.003 | - | - | - |
+| 9.3994 | 17370 | 0.0144 | - | - | - |
+| 9.4156 | 17400 | 0.0222 | - | - | - |
+| 9.4318 | 17430 | 0.0083 | - | - | - |
+| 9.4481 | 17460 | 0.0011 | - | - | - |
+| 9.4643 | 17490 | 0.0015 | - | - | - |
+| 9.4805 | 17520 | 0.004 | - | - | - |
+| 9.4968 | 17550 | 0.0021 | - | - | - |
+| 9.5130 | 17580 | 0.0 | - | - | - |
+| 9.5292 | 17610 | 0.0021 | - | - | - |
+| 9.5455 | 17640 | 0.0009 | - | - | - |
+| 9.5617 | 17670 | 0.0161 | - | - | - |
+| 9.5779 | 17700 | 0.001 | - | - | - |
+| 9.5942 | 17730 | 0.0257 | - | - | - |
+| 9.6104 | 17760 | 0.0002 | - | - | - |
+| 9.6266 | 17790 | 0.0009 | - | - | - |
+| 9.6429 | 17820 | 0.0442 | - | - | - |
+| 9.6591 | 17850 | 0.0011 | - | - | - |
+| 9.6753 | 17880 | 0.0016 | - | - | - |
+| 9.6916 | 17910 | 0.0196 | - | - | - |
+| 9.7078 | 17940 | 0.0144 | - | - | - |
+| 9.7240 | 17970 | 0.0 | - | - | - |
+| 9.7403 | 18000 | 0.0001 | - | - | - |
+| 9.7565 | 18030 | 0.004 | - | - | - |
+| 9.7727 | 18060 | 0.0001 | - | - | - |
+| 9.7890 | 18090 | 0.0013 | - | - | - |
+| 9.8052 | 18120 | 0.0024 | - | - | - |
+| 9.8214 | 18150 | 0.0044 | - | - | - |
+| 9.8377 | 18180 | 0.0005 | - | - | - |
+| 9.8539 | 18210 | 0.0 | - | - | - |
+| 9.8701 | 18240 | 0.0176 | - | - | - |
+| 9.8864 | 18270 | 0.0007 | - | - | - |
+| 9.9026 | 18300 | 0.0001 | - | - | - |
+| 9.9188 | 18330 | 0.0003 | - | - | - |
+| 9.9351 | 18360 | 0.0091 | - | - | - |
+| 9.9513 | 18390 | 0.0025 | - | - | - |
+| 9.9675 | 18420 | 0.0006 | - | - | - |
+| 9.9838 | 18450 | 0.0 | - | - | - |
+| **10.0** | **18480** | **0.0107** | **0.2172** | **nan** | **1.0** |
+
+* The bold row denotes the saved checkpoint.
+
+
+### Framework Versions
+- Python: 3.11.9
+- Sentence Transformers: 3.4.1
+- Transformers: 4.48.3
+- PyTorch: 2.3.0
+- Accelerate: 1.1.0
+- Datasets: 3.3.2
+- Tokenizers: 0.21.0
+
+## Citation
+
+### BibTeX
+
+#### Sentence Transformers
+```bibtex
+@inproceedings{reimers-2019-sentence-bert,
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
+ author = "Reimers, Nils and Gurevych, Iryna",
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
+ month = "11",
+ year = "2019",
+ publisher = "Association for Computational Linguistics",
+ url = "https://arxiv.org/abs/1908.10084",
+}
+```
+
+#### MultipleNegativesRankingLoss
+```bibtex
+@misc{henderson2017efficient,
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
+ year={2017},
+ eprint={1705.00652},
+ archivePrefix={arXiv},
+ primaryClass={cs.CL}
+}
+```
+
+
+
+
+
+
\ No newline at end of file