--- library_name: residuals base_model: Qwen/Qwen2.5-14B base_model_relation: adapter instruct_model: Qwen/Qwen2.5-14B-Instruct pipeline_tag: text-generation tags: - residuals - delta - task-arithmetic - finetune --- # Instruction Residuals This repository contains instruction residuals (delta weights) computed as the parameter-wise difference between `Qwen/Qwen2.5-14B-Instruct` and `Qwen/Qwen2.5-14B`. Apply these residuals to the base model to reconstruct the instruction-tuned weights without retraining. ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer from residuals import Residuals base = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-14B") tok = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-14B") res = Residuals.from_pretrained("residuals/qwen2.5-14b") res.apply(base, base_tokenizer=tok) ``` ## Provenance - **Created at**: 2025-10-25T16:18:30.099054+00:00 - **DType**: float32 - **Parameters**: 579 - **Shapes hash**: b3fe0942a175bf28daab2610457f75a24fbeca9d5c4cad1c951e9beac71b6a53 - **Names hash**: 155db82de40585f183c6134b5f8843abbe195fbe1997d967cd5ab9d22d54dc2e - **Base model**: `Qwen/Qwen2.5-14B` - **Instruction model**: `Qwen/Qwen2.5-14B-Instruct` ## Files - **model.safetensors**: Serialized residual tensors (safetensors format). - (optional) **model.safetensors.index.json** + shard files `model-00001-of-000N.safetensors`, ... for multi-part weights. - **config.json**: Residuals metadata and provenance. - **tokenizer files**: Saved tokenizer for compatibility. ## About this format These are additive residuals (task vectors). Applying them to the base model's parameters reconstructs the instruction-tuned model. ## Tools Generated with the `residuals` Python package. Install via: `pip install residuals`. - PyPI: https://pypi.org/project/residuals/ - Source: https://github.com/omarish/residuals