Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,183 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
---
|
| 5 |
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
|
|
|
|
|
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
|
| 29 |
|
| 30 |
-
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
|
| 36 |
-
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
|
| 41 |
|
| 42 |
-
|
| 43 |
|
| 44 |
-
|
| 45 |
|
| 46 |
-
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
|
| 50 |
-
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
|
|
|
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
|
|
|
|
| 57 |
|
| 58 |
-
|
|
|
|
| 59 |
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
|
| 63 |
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
|
| 68 |
-
|
| 69 |
|
| 70 |
-
|
| 71 |
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
|
| 75 |
|
| 76 |
-
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
|
|
|
|
|
|
|
| 79 |
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
[
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
[
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
[
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
---
|
| 5 |
|
| 6 |
+
<div align="center">
|
| 7 |
+
<img src="https://github.com/SapienzaNLP/relik/blob/main/relik.png?raw=true" height="150">
|
| 8 |
+
<img src="https://github.com/SapienzaNLP/relik/blob/main/Sapienza_Babelscape.png?raw=true" height="50">
|
| 9 |
+
</div>
|
| 10 |
|
| 11 |
+
<div align="center">
|
| 12 |
+
<h1>Retrieve, Read and LinK: Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget</h1>
|
| 13 |
+
</div>
|
| 14 |
|
| 15 |
+
<div style="display:flex; justify-content: center; align-items: center; flex-direction: row;">
|
| 16 |
+
<a href="https://2024.aclweb.org/"><img src="http://img.shields.io/badge/ACL-2024-4b44ce.svg"></a>
|
| 17 |
+
<a href="https://aclanthology.org/"><img src="http://img.shields.io/badge/paper-ACL--anthology-B31B1B.svg"></a>
|
| 18 |
+
<a href="https://arxiv.org/abs/placeholder"><img src="https://img.shields.io/badge/arXiv-placeholder-b31b1b.svg"></a>
|
| 19 |
+
</div>
|
| 20 |
+
<div style="display:flex; justify-content: center; align-items: center; flex-direction: row;">
|
| 21 |
+
<a href="https://huggingface.co/collections/sapienzanlp/relik-retrieve-read-and-link-665d9e4a5c3ecba98c1bef19"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Collection-FCD21D"></a>
|
| 22 |
+
<a href="https://github.com/SapienzaNLP/relik"><img src="https://img.shields.io/badge/GitHub-Repo-121013?logo=github&logoColor=white"></a>
|
| 23 |
+
<a href="https://github.com/SapienzaNLP/relik/releases"><img src="https://img.shields.io/github/v/release/SapienzaNLP/relik"></a>
|
| 24 |
+
</div>
|
| 25 |
|
| 26 |
|
| 27 |
+
A blazing fast and lightweight Information Extraction model for **Entity Linking** and **Relation Extraction**.
|
| 28 |
|
| 29 |
+
## 🛠️ Installation
|
| 30 |
|
| 31 |
+
Installation from PyPI
|
| 32 |
|
| 33 |
+
```bash
|
| 34 |
+
pip install relik
|
| 35 |
+
```
|
| 36 |
|
| 37 |
+
<details>
|
| 38 |
+
<summary>Other installation options</summary>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
#### Install with optional dependencies
|
| 41 |
|
| 42 |
+
Install with all the optional dependencies.
|
| 43 |
|
| 44 |
+
```bash
|
| 45 |
+
pip install relik[all]
|
| 46 |
+
```
|
| 47 |
|
| 48 |
+
Install with optional dependencies for training and evaluation.
|
| 49 |
|
| 50 |
+
```bash
|
| 51 |
+
pip install relik[train]
|
| 52 |
+
```
|
| 53 |
|
| 54 |
+
Install with optional dependencies for [FAISS](https://github.com/facebookresearch/faiss)
|
| 55 |
|
| 56 |
+
FAISS PyPI package is only available for CPU. For GPU, install it from source or use the conda package.
|
| 57 |
|
| 58 |
+
For CPU:
|
| 59 |
|
| 60 |
+
```bash
|
| 61 |
+
pip install relik[faiss]
|
| 62 |
+
```
|
| 63 |
|
| 64 |
+
For GPU:
|
| 65 |
|
| 66 |
+
```bash
|
| 67 |
+
conda create -n relik python=3.10
|
| 68 |
+
conda activate relik
|
| 69 |
|
| 70 |
+
# install pytorch
|
| 71 |
+
conda install -y pytorch=2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia
|
| 72 |
|
| 73 |
+
# GPU
|
| 74 |
+
conda install -y -c pytorch -c nvidia faiss-gpu=1.8.0
|
| 75 |
+
# or GPU with NVIDIA RAFT
|
| 76 |
+
conda install -y -c pytorch -c nvidia -c rapidsai -c conda-forge faiss-gpu-raft=1.8.0
|
| 77 |
|
| 78 |
+
pip install relik
|
| 79 |
+
```
|
| 80 |
|
| 81 |
+
Install with optional dependencies for serving the models with
|
| 82 |
+
[FastAPI](https://fastapi.tiangolo.com/) and [Ray](https://docs.ray.io/en/latest/serve/quickstart.html).
|
| 83 |
|
| 84 |
+
```bash
|
| 85 |
+
pip install relik[serve]
|
| 86 |
+
```
|
| 87 |
|
| 88 |
+
#### Installation from source
|
| 89 |
|
| 90 |
+
```bash
|
| 91 |
+
git clone https://github.com/SapienzaNLP/relik.git
|
| 92 |
+
cd relik
|
| 93 |
+
pip install -e .[all]
|
| 94 |
+
```
|
| 95 |
|
| 96 |
+
</details>
|
| 97 |
|
| 98 |
+
## 🚀 Quick Start
|
| 99 |
|
| 100 |
+
[//]: # (Write a short description of the model and how to use it with the `from_pretrained` method.)
|
| 101 |
|
| 102 |
+
ReLiK is a lightweight and fast model for **Entity Linking** and **Relation Extraction**.
|
| 103 |
+
It is composed of two main components: a retriever and a reader.
|
| 104 |
+
The retriever is responsible for retrieving relevant documents from a large collection,
|
| 105 |
+
while the reader is responsible for extracting entities and relations from the retrieved documents.
|
| 106 |
+
ReLiK can be used with the `from_pretrained` method to load a pre-trained pipeline.
|
| 107 |
|
| 108 |
+
Here is an example of how to use ReLiK for **Relation Extraction**:
|
| 109 |
|
| 110 |
+
```python
|
| 111 |
+
from relik import Relik
|
| 112 |
+
from relik.inference.data.objects import RelikOutput
|
| 113 |
|
| 114 |
+
relik = Relik.from_pretrained("sapienzanlp/relik-relation-extraction-nyt-large")
|
| 115 |
+
relik_out: RelikOutput = relik("Michael Jordan was one of the best players in the NBA.")
|
| 116 |
+
```
|
| 117 |
|
|
|
|
| 118 |
|
| 119 |
+
RelikOutput(
|
| 120 |
+
text='Michael Jordan was one of the best players in the NBA.',
|
| 121 |
+
tokens=Michael Jordan was one of the best players in the NBA.,
|
| 122 |
+
id=0,
|
| 123 |
+
spans=[
|
| 124 |
+
Span(start=0, end=14, label='--NME--', text='Michael Jordan'),
|
| 125 |
+
Span(start=50, end=53, label='--NME--', text='NBA')
|
| 126 |
+
],
|
| 127 |
+
triplets=[
|
| 128 |
+
Triplets(
|
| 129 |
+
subject=Span(start=0, end=14, label='--NME--', text='Michael Jordan'),
|
| 130 |
+
label='company',
|
| 131 |
+
object=Span(start=50, end=53, label='--NME--', text='NBA'),
|
| 132 |
+
confidence=1.0
|
| 133 |
+
)
|
| 134 |
+
],
|
| 135 |
+
candidates=Candidates(
|
| 136 |
+
span=[],
|
| 137 |
+
triplet=[
|
| 138 |
+
[
|
| 139 |
+
[
|
| 140 |
+
{"text": "company", "id": 4, "metadata": {"definition": "company of this person"}},
|
| 141 |
+
{"text": "nationality", "id": 10, "metadata": {"definition": "nationality of this person or entity"}},
|
| 142 |
+
{"text": "child", "id": 17, "metadata": {"definition": "child of this person"}},
|
| 143 |
+
{"text": "founded by", "id": 0, "metadata": {"definition": "founder or co-founder of this organization, religion or place"}},
|
| 144 |
+
{"text": "residence", "id": 18, "metadata": {"definition": "place where this person has lived"}},
|
| 145 |
+
...
|
| 146 |
+
]
|
| 147 |
+
]
|
| 148 |
+
]
|
| 149 |
+
),
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
## 📊 Performance
|
| 154 |
+
|
| 155 |
+
The following table shows the results (Micro F1) of ReLiK Large on the NYT dataset:
|
| 156 |
+
|
| 157 |
+
| Model | NYT | NYT (Pretr) | AIT (m:s) |
|
| 158 |
+
|------------------------------------------|------|-------|------------|
|
| 159 |
+
| REBEL | 93.1 | 93.4 | 01:45 |
|
| 160 |
+
| UiE | 93.5 | -- | -- |
|
| 161 |
+
| USM | 94.0 | 94.1 | -- |
|
| 162 |
+
| ➡️ [ReLiK<sub>Large<sub>](https://huggingface.co/sapienzanlp/relik-relation-extraction-nyt-large) | **95.0** | **94.9** | 00:30 |
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
## 🤖 Models
|
| 166 |
+
|
| 167 |
+
Models can be found on [🤗 Hugging Face](https://huggingface.co/collections/sapienzanlp/relik-retrieve-read-and-link-665d9e4a5c3ecba98c1bef19).
|
| 168 |
+
|
| 169 |
+
## 💽 Cite this work
|
| 170 |
+
|
| 171 |
+
If you use any part of this work, please consider citing the paper as follows:
|
| 172 |
+
|
| 173 |
+
```bibtex
|
| 174 |
+
@inproceedings{orlando-etal-2024-relik,
|
| 175 |
+
title = "Retrieve, Read and LinK: Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget",
|
| 176 |
+
author = "Orlando, Riccardo and Huguet Cabot, Pere-Llu{\'\i}s and Barba, Edoardo and Navigli, Roberto",
|
| 177 |
+
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
|
| 178 |
+
month = aug,
|
| 179 |
+
year = "2024",
|
| 180 |
+
address = "Bangkok, Thailand",
|
| 181 |
+
publisher = "Association for Computational Linguistics",
|
| 182 |
+
}
|
| 183 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|