RapMinerz
commited on
Commit
·
9473013
1
Parent(s):
fa023db
update model
Browse files
.DS_Store
CHANGED
|
Binary files a/.DS_Store and b/.DS_Store differ
|
|
|
README.md
CHANGED
|
@@ -4,6 +4,7 @@ language:
|
|
| 4 |
tags:
|
| 5 |
- music
|
| 6 |
- rap
|
|
|
|
| 7 |
- word2vec
|
| 8 |
library_name: gensim
|
| 9 |
---
|
|
@@ -11,11 +12,11 @@ library_name: gensim
|
|
| 11 |
|
| 12 |
## Overview
|
| 13 |
|
| 14 |
-
Word2Bezbar are Word2Vec models trained on a 323MB dataset of cleaned French rap lyrics sourced from Genius. The model captures the semantic relationships between words in the context of French rap, providing a useful tool for academic and research purposes in natural language processing
|
| 15 |
|
| 16 |
## Model Details
|
| 17 |
|
| 18 |
-
Size is __small__
|
| 19 |
|
| 20 |
| Parameter | Value |
|
| 21 |
|----------------|--------------|
|
|
@@ -24,7 +25,7 @@ Size is __small__
|
|
| 24 |
| Epochs | 10 |
|
| 25 |
| Algorithm | CBOW |
|
| 26 |
|
| 27 |
-
##
|
| 28 |
|
| 29 |
| Requirement | Version |
|
| 30 |
|----------------|--------------|
|
|
@@ -48,7 +49,7 @@ Size is __small__
|
|
| 48 |
3. **Navigate to the Model Directory**:
|
| 49 |
|
| 50 |
```bash
|
| 51 |
-
cd Word2Bezbar-
|
| 52 |
```
|
| 53 |
|
| 54 |
## Loading the Model
|
|
@@ -59,16 +60,67 @@ To load the Word2Bezbar Word2Vec model, use the following Python code:
|
|
| 59 |
import gensim
|
| 60 |
|
| 61 |
# Load the Word2Vec model
|
| 62 |
-
model = gensim.models.Word2Vec.load("
|
| 63 |
```
|
| 64 |
|
| 65 |
## Using the Model
|
| 66 |
|
| 67 |
-
Once the model is loaded, you can use it
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
```python
|
| 70 |
-
|
| 71 |
-
|
|
|
|
| 72 |
```
|
| 73 |
|
| 74 |
## Purpose and Disclaimer
|
|
@@ -77,4 +129,4 @@ This model is designed for academic and research purposes only. It is not intend
|
|
| 77 |
|
| 78 |
## Contact
|
| 79 |
|
| 80 |
-
For any questions or issues, please contact the repository owner at [email protected].
|
|
|
|
| 4 |
tags:
|
| 5 |
- music
|
| 6 |
- rap
|
| 7 |
+
- lyrics
|
| 8 |
- word2vec
|
| 9 |
library_name: gensim
|
| 10 |
---
|
|
|
|
| 12 |
|
| 13 |
## Overview
|
| 14 |
|
| 15 |
+
Word2Bezbar are Word2Vec models trained on a 323MB dataset of cleaned French rap lyrics sourced from Genius. The model captures the semantic relationships between words in the context of French rap, providing a useful tool for academic and research purposes in natural language processing and linguistic studies associated to music writing.
|
| 16 |
|
| 17 |
## Model Details
|
| 18 |
|
| 19 |
+
Size of this model is __small__
|
| 20 |
|
| 21 |
| Parameter | Value |
|
| 22 |
|----------------|--------------|
|
|
|
|
| 25 |
| Epochs | 10 |
|
| 26 |
| Algorithm | CBOW |
|
| 27 |
|
| 28 |
+
## Versions
|
| 29 |
|
| 30 |
| Requirement | Version |
|
| 31 |
|----------------|--------------|
|
|
|
|
| 49 |
3. **Navigate to the Model Directory**:
|
| 50 |
|
| 51 |
```bash
|
| 52 |
+
cd Word2Bezbar-small
|
| 53 |
```
|
| 54 |
|
| 55 |
## Loading the Model
|
|
|
|
| 60 |
import gensim
|
| 61 |
|
| 62 |
# Load the Word2Vec model
|
| 63 |
+
model = gensim.models.Word2Vec.load("word2vec.model")
|
| 64 |
```
|
| 65 |
|
| 66 |
## Using the Model
|
| 67 |
|
| 68 |
+
Once the model is loaded, you can use it as shown
|
| 69 |
+
|
| 70 |
+
To get the most similary words regarding a word:
|
| 71 |
+
|
| 72 |
+
```python
|
| 73 |
+
model.wv.most_similar("bendo")
|
| 74 |
+
[('binks', 0.8920747637748718),
|
| 75 |
+
('bando', 0.8460732698440552),
|
| 76 |
+
('hood', 0.8299438953399658),
|
| 77 |
+
('tieks', 0.8264378309249878),
|
| 78 |
+
('hall', 0.817583441734314),
|
| 79 |
+
('secteur', 0.8145656585693359),
|
| 80 |
+
('barrio', 0.809047281742096),
|
| 81 |
+
('block', 0.793493390083313),
|
| 82 |
+
('bâtiment', 0.7826434969902039),
|
| 83 |
+
('bloc', 0.7753982543945312)]
|
| 84 |
+
|
| 85 |
+
model.wv.most_similar("kichta")
|
| 86 |
+
[('liasse', 0.878665566444397),
|
| 87 |
+
('sse-lia', 0.8552991151809692),
|
| 88 |
+
('kishta', 0.8535938262939453),
|
| 89 |
+
('kich', 0.7646669149398804),
|
| 90 |
+
('skalape', 0.7576569318771362),
|
| 91 |
+
('moula', 0.7466527223587036),
|
| 92 |
+
('valise', 0.7429592609405518),
|
| 93 |
+
('sacoche', 0.7324921488761902),
|
| 94 |
+
('mallette', 0.7247079014778137),
|
| 95 |
+
('re-pai', 0.7060815095901489)]
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
To find the word that doesn't match in a list of words:
|
| 99 |
+
|
| 100 |
+
```python
|
| 101 |
+
model.wv.doesnt_match(["racli","gow","gadji","fimbi","boug"])
|
| 102 |
+
'boug'
|
| 103 |
+
|
| 104 |
+
model.wv.doesnt_match(["Zidane","Mbappé","Ronaldo","Messi","Jordan"])
|
| 105 |
+
'Jordan'
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
To find the similarity between two words:
|
| 109 |
+
|
| 110 |
+
```python
|
| 111 |
+
model.wv.similarity("kichta", "moula")
|
| 112 |
+
0.7466528
|
| 113 |
+
|
| 114 |
+
model.wv.similarity("bonheur", "moula")
|
| 115 |
+
0.16985293
|
| 116 |
+
```
|
| 117 |
+
|
| 118 |
+
Or even get the vector representation of a word:
|
| 119 |
|
| 120 |
```python
|
| 121 |
+
model.wv['ekip']
|
| 122 |
+
array([ 1.4757039e-01, ... 1.1260221e+00],
|
| 123 |
+
dtype=float32)
|
| 124 |
```
|
| 125 |
|
| 126 |
## Purpose and Disclaimer
|
|
|
|
| 129 |
|
| 130 |
## Contact
|
| 131 |
|
| 132 |
+
For any questions or issues, please contact the repository owner, __RapMinerz__, at [email protected].
|
Word2Bezbar-small.model → word2vec.model
RENAMED
|
File without changes
|
Word2Bezbar-small.model.syn1neg.npy → word2vec.model.syn1neg.npy
RENAMED
|
File without changes
|
Word2Bezbar-small.model.wv.vectors.npy → word2vec.model.wv.vectors.npy
RENAMED
|
File without changes
|